2017-05-08 20:39:42 +02:00
|
|
|
/*
|
|
|
|
* Based on libgeotrans with the following Source Code Disclaimer:
|
|
|
|
|
|
|
|
1. The GEOTRANS source code ("the software") is provided free of charge by
|
|
|
|
the National Imagery and Mapping Agency (NIMA) of the United States
|
|
|
|
Department of Defense. Although NIMA makes no copyright claim under Title 17
|
|
|
|
U.S.C., NIMA claims copyrights in the source code under other legal regimes.
|
|
|
|
NIMA hereby grants to each user of the software a license to use and
|
|
|
|
distribute the software, and develop derivative works.
|
|
|
|
|
|
|
|
2. Warranty Disclaimer: The software was developed to meet only the internal
|
|
|
|
requirements of the U.S. National Imagery and Mapping Agency. The software
|
|
|
|
is provided "as is," and no warranty, express or implied, including but not
|
|
|
|
limited to the implied warranties of merchantability and fitness for
|
|
|
|
particular purpose or arising by statute or otherwise in law or from a
|
|
|
|
course of dealing or usage in trade, is made by NIMA as to the accuracy and
|
|
|
|
functioning of the software.
|
|
|
|
|
|
|
|
3. NIMA and its personnel are not required to provide technical support or
|
|
|
|
general assistance with respect to the software.
|
|
|
|
|
|
|
|
4. Neither NIMA nor its personnel will be liable for any claims, losses, or
|
|
|
|
damages arising from or connected with the use of the software. The user
|
|
|
|
agrees to hold harmless the United States National Imagery and Mapping
|
|
|
|
Agency. The user's sole and exclusive remedy is to stop using the software.
|
|
|
|
|
|
|
|
5. NIMA requests that products developed using the software credit the
|
|
|
|
source of the software with the following statement, "The product was
|
|
|
|
developed using GEOTRANS, a product of the National Imagery and Mapping
|
|
|
|
Agency and U.S. Army Engineering Research and Development Center."
|
|
|
|
|
|
|
|
6. For any products developed using the software, NIMA requires a disclaimer
|
|
|
|
that use of the software does not indicate endorsement or approval of the
|
|
|
|
product by the Secretary of Defense or the National Imagery and Mapping
|
|
|
|
Agency. Pursuant to the United States Code, 10 U.S.C. Sec. 2797, the name of
|
|
|
|
the National Imagery and Mapping Agency, the initials "NIMA", the seal of
|
|
|
|
the National Imagery and Mapping Agency, or any colorable imitation thereof
|
|
|
|
shall not be used to imply approval, endorsement, or authorization of a
|
|
|
|
product without prior written permission from United States Secretary of
|
|
|
|
Defense.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
2018-02-26 19:13:57 +01:00
|
|
|
#include "ellipsoid.h"
|
2017-05-04 20:25:47 +02:00
|
|
|
#include "albersequal.h"
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef M_PI_2
|
|
|
|
#define M_PI_2 1.57079632679489661923
|
|
|
|
#endif // M_PI_2
|
|
|
|
|
|
|
|
#define ONE_MINUS_SQR(x) (1.0 - (x) * (x))
|
|
|
|
#define ALBERS_Q(slat, one_minus_sqr_es_sin, es_sin) \
|
|
|
|
(_one_minus_es2 * ((slat) / (one_minus_sqr_es_sin) - \
|
|
|
|
(1 / (_two_es)) * log((1 - (es_sin)) / (1 + (es_sin)))))
|
|
|
|
#define ALBERS_M(clat, one_minus_sqr_es_sin) \
|
|
|
|
((clat) / sqrt(one_minus_sqr_es_sin))
|
|
|
|
|
|
|
|
|
2018-01-20 20:13:56 +01:00
|
|
|
AlbersEqual::AlbersEqual(const Ellipsoid *ellipsoid, double standardParallel1,
|
2017-05-04 20:25:47 +02:00
|
|
|
double standardParallel2, double latitudeOrigin, double longitudeOrigin,
|
|
|
|
double falseEasting, double falseNorthing)
|
|
|
|
{
|
|
|
|
double sin_lat, sin_lat1, sin_lat2, cos_lat1, cos_lat2;
|
|
|
|
double m1, m2, sqr_m1, sqr_m2;
|
|
|
|
double q0, q1, q2;
|
|
|
|
double es_sin, es_sin1, es_sin2;
|
|
|
|
double one_minus_sqr_es_sin1, one_minus_sqr_es_sin2;
|
|
|
|
double nq0;
|
|
|
|
double sp1, sp2;
|
|
|
|
|
|
|
|
|
|
|
|
_latitudeOrigin = deg2rad(latitudeOrigin);
|
|
|
|
_longitudeOrigin = deg2rad(longitudeOrigin);
|
|
|
|
_falseEasting = falseEasting;
|
|
|
|
_falseNorthing = falseNorthing;
|
|
|
|
|
|
|
|
sp1 = deg2rad(standardParallel1);
|
|
|
|
sp2 = deg2rad(standardParallel2);
|
|
|
|
|
2018-03-19 19:13:48 +01:00
|
|
|
_a2 = ellipsoid->radius() * ellipsoid->radius();
|
|
|
|
_es2 = 2 * ellipsoid->flattening() - ellipsoid->flattening()
|
|
|
|
* ellipsoid->flattening();
|
2017-05-04 20:25:47 +02:00
|
|
|
_es = sqrt(_es2);
|
|
|
|
_one_minus_es2 = 1 - _es2;
|
|
|
|
_two_es = 2 * _es;
|
|
|
|
|
|
|
|
sin_lat = sin(_latitudeOrigin);
|
|
|
|
es_sin = _es * sin_lat;
|
|
|
|
q0 = ALBERS_Q(sin_lat, ONE_MINUS_SQR(es_sin), es_sin);
|
|
|
|
|
|
|
|
sin_lat1 = sin(sp1);
|
|
|
|
cos_lat1 = cos(sp1);
|
|
|
|
es_sin1 = _es * sin_lat1;
|
|
|
|
one_minus_sqr_es_sin1 = ONE_MINUS_SQR(es_sin1);
|
|
|
|
m1 = ALBERS_M(cos_lat1, one_minus_sqr_es_sin1);
|
|
|
|
q1 = ALBERS_Q(sin_lat1, one_minus_sqr_es_sin1, es_sin1);
|
|
|
|
|
|
|
|
sqr_m1 = m1 * m1;
|
|
|
|
if (fabs(sp1 - sp2) > 1.0e-10) {
|
|
|
|
sin_lat2 = sin(sp2);
|
|
|
|
cos_lat2 = cos(sp2);
|
|
|
|
es_sin2 = _es * sin_lat2;
|
|
|
|
one_minus_sqr_es_sin2 = ONE_MINUS_SQR(es_sin2);
|
|
|
|
m2 = ALBERS_M(cos_lat2, one_minus_sqr_es_sin2);
|
|
|
|
q2 = ALBERS_Q(sin_lat2, one_minus_sqr_es_sin2, es_sin2);
|
|
|
|
sqr_m2 = m2 * m2;
|
|
|
|
_n = (sqr_m1 - sqr_m2) / (q2 - q1);
|
|
|
|
} else
|
|
|
|
_n = sin_lat1;
|
|
|
|
|
|
|
|
_C = sqr_m1 + _n * q1;
|
2018-03-19 19:13:48 +01:00
|
|
|
_a_over_n = ellipsoid->radius() / _n;
|
2017-05-04 20:25:47 +02:00
|
|
|
nq0 = _n * q0;
|
|
|
|
_rho0 = (_C < nq0) ? 0 : _a_over_n * sqrt(_C - nq0);
|
|
|
|
}
|
|
|
|
|
2018-04-15 16:27:47 +02:00
|
|
|
PointD AlbersEqual::ll2xy(const Coordinates &c) const
|
2017-05-04 20:25:47 +02:00
|
|
|
{
|
|
|
|
double dlam;
|
|
|
|
double sin_lat;
|
|
|
|
double es_sin;
|
|
|
|
double q;
|
|
|
|
double rho;
|
|
|
|
double theta;
|
|
|
|
double nq;
|
|
|
|
|
|
|
|
|
|
|
|
dlam = deg2rad(c.lon()) - _longitudeOrigin;
|
|
|
|
if (dlam > M_PI)
|
|
|
|
dlam -= 2.0 * M_PI;
|
|
|
|
if (dlam < -M_PI)
|
|
|
|
dlam += 2.0 * M_PI;
|
|
|
|
|
|
|
|
sin_lat = sin(deg2rad(c.lat()));
|
|
|
|
es_sin = _es * sin_lat;
|
|
|
|
q = ALBERS_Q(sin_lat, ONE_MINUS_SQR(es_sin), es_sin);
|
|
|
|
nq = _n * q;
|
|
|
|
rho = (_C < nq) ? 0 : _a_over_n * sqrt(_C - nq);
|
|
|
|
theta = _n * dlam;
|
|
|
|
|
2018-04-15 16:27:47 +02:00
|
|
|
return PointD(rho * sin(theta) + _falseEasting,
|
2017-05-04 20:25:47 +02:00
|
|
|
_rho0 - rho * cos(theta) + _falseNorthing);
|
|
|
|
}
|
|
|
|
|
2018-04-15 16:27:47 +02:00
|
|
|
Coordinates AlbersEqual::xy2ll(const PointD &p) const
|
2017-05-04 20:25:47 +02:00
|
|
|
{
|
|
|
|
double dy, dx;
|
|
|
|
double rho0_minus_dy;
|
|
|
|
double q, qc, q_over_2;
|
|
|
|
double rho, rho_n;
|
|
|
|
double phi, delta_phi = 1.0;
|
|
|
|
double sin_phi;
|
|
|
|
double es_sin, one_minus_sqr_es_sin;
|
|
|
|
double theta = 0.0;
|
|
|
|
int count = 30;
|
|
|
|
double tolerance = 4.85e-10;
|
|
|
|
double lat, lon;
|
|
|
|
|
|
|
|
|
|
|
|
dy = p.y() - _falseNorthing;
|
|
|
|
dx = p.x() - _falseEasting;
|
|
|
|
|
|
|
|
rho0_minus_dy = _rho0 - dy;
|
|
|
|
rho = sqrt(dx * dx + rho0_minus_dy * rho0_minus_dy);
|
|
|
|
|
|
|
|
if (_n < 0) {
|
|
|
|
rho *= -1.0;
|
|
|
|
dx *= -1.0;
|
|
|
|
rho0_minus_dy *= -1.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rho != 0.0)
|
|
|
|
theta = atan2(dx, rho0_minus_dy);
|
|
|
|
rho_n = rho * _n;
|
2018-03-19 19:13:48 +01:00
|
|
|
q = (_C - (rho_n * rho_n) / _a2) / _n;
|
2017-05-04 20:25:47 +02:00
|
|
|
qc = 1 - ((_one_minus_es2) / (_two_es)) * log((1.0 - _es) / (1.0 + _es));
|
|
|
|
if (fabs(fabs(qc) - fabs(q)) > 1.0e-6) {
|
|
|
|
q_over_2 = q / 2.0;
|
|
|
|
if (q_over_2 > 1.0)
|
|
|
|
lat = M_PI_2;
|
|
|
|
else if (q_over_2 < -1.0)
|
|
|
|
lat = -M_PI_2;
|
|
|
|
else {
|
|
|
|
phi = asin(q_over_2);
|
|
|
|
if (_es < 1.0e-10)
|
|
|
|
lat = phi;
|
|
|
|
else {
|
|
|
|
while ((fabs(delta_phi) > tolerance) && count) {
|
|
|
|
sin_phi = sin(phi);
|
|
|
|
es_sin = _es * sin_phi;
|
|
|
|
one_minus_sqr_es_sin = ONE_MINUS_SQR(es_sin);
|
|
|
|
delta_phi = (one_minus_sqr_es_sin * one_minus_sqr_es_sin)
|
|
|
|
/ (2.0 * cos(phi)) * (q / (_one_minus_es2) - sin_phi
|
|
|
|
/ one_minus_sqr_es_sin + (log((1.0 - es_sin)
|
|
|
|
/ (1.0 + es_sin)) / (_two_es)));
|
|
|
|
phi += delta_phi;
|
|
|
|
count --;
|
|
|
|
}
|
|
|
|
|
|
|
|
lat = phi;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (lat > M_PI_2)
|
|
|
|
lat = M_PI_2;
|
|
|
|
else if (lat < -M_PI_2)
|
|
|
|
lat = -M_PI_2;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (q >= 0.0)
|
|
|
|
lat = M_PI_2;
|
|
|
|
else
|
|
|
|
lat = -M_PI_2;
|
|
|
|
}
|
|
|
|
|
|
|
|
lon = _longitudeOrigin + theta / _n;
|
|
|
|
|
|
|
|
if (lon > M_PI)
|
|
|
|
lon -= M_PI * 2;
|
|
|
|
if (lon < -M_PI)
|
|
|
|
lon += M_PI * 2;
|
|
|
|
|
|
|
|
if (lon > M_PI)
|
|
|
|
lon = M_PI;
|
|
|
|
else if (lon < -M_PI)
|
|
|
|
lon = -M_PI;
|
|
|
|
|
|
|
|
return Coordinates(rad2deg(lon), rad2deg(lat));
|
|
|
|
}
|