mirror of
https://github.com/tumic0/GPXSee.git
synced 2025-01-18 19:52:09 +01:00
Datum shift optimization (precompute ellipsoid constants)
+ projections code unification
This commit is contained in:
parent
b3940283a8
commit
a486f9e78d
@ -46,11 +46,11 @@ Defense.
|
||||
|
||||
|
||||
#define ONE_MINUS_SQR(x) (1.0 - (x) * (x))
|
||||
#define ALBERS_Q(slat, one_minus_sqr_es_sin, es_sin) \
|
||||
(_one_minus_es2 * ((slat) / (one_minus_sqr_es_sin) - \
|
||||
(1 / (_two_es)) * log((1 - (es_sin)) / (1 + (es_sin)))))
|
||||
#define ALBERS_M(clat, one_minus_sqr_es_sin) \
|
||||
((clat) / sqrt(one_minus_sqr_es_sin))
|
||||
#define ALBERS_Q(slat, one_minus_sqr_e_sin, es_sin) \
|
||||
(_one_minus_es * ((slat) / (one_minus_sqr_e_sin) - \
|
||||
(1 / (_two_e)) * log((1 - (es_sin)) / (1 + (es_sin)))))
|
||||
#define ALBERS_M(clat, one_minus_sqr_e_sin) \
|
||||
((clat) / sqrt(one_minus_sqr_e_sin))
|
||||
|
||||
|
||||
AlbersEqual::AlbersEqual(const Ellipsoid *ellipsoid, double standardParallel1,
|
||||
@ -60,8 +60,8 @@ AlbersEqual::AlbersEqual(const Ellipsoid *ellipsoid, double standardParallel1,
|
||||
double sin_lat, sin_lat1, sin_lat2, cos_lat1, cos_lat2;
|
||||
double m1, m2, sqr_m1, sqr_m2;
|
||||
double q0, q1, q2;
|
||||
double es_sin, es_sin1, es_sin2;
|
||||
double one_minus_sqr_es_sin1, one_minus_sqr_es_sin2;
|
||||
double e_sin, e_sin1, e_sin2;
|
||||
double one_minus_sqr_e_sin1, one_minus_sqr_e_sin2;
|
||||
double nq0;
|
||||
double sp1, sp2;
|
||||
|
||||
@ -75,31 +75,30 @@ AlbersEqual::AlbersEqual(const Ellipsoid *ellipsoid, double standardParallel1,
|
||||
sp2 = deg2rad(standardParallel2);
|
||||
|
||||
_a2 = ellipsoid->radius() * ellipsoid->radius();
|
||||
_es2 = 2 * ellipsoid->flattening() - ellipsoid->flattening()
|
||||
* ellipsoid->flattening();
|
||||
_es = sqrt(_es2);
|
||||
_one_minus_es2 = 1 - _es2;
|
||||
_two_es = 2 * _es;
|
||||
_es = ellipsoid->es();
|
||||
_e = sqrt(_es);
|
||||
_one_minus_es = 1 - _es;
|
||||
_two_e = 2 * _e;
|
||||
|
||||
sin_lat = sin(_latitudeOrigin);
|
||||
es_sin = _es * sin_lat;
|
||||
q0 = ALBERS_Q(sin_lat, ONE_MINUS_SQR(es_sin), es_sin);
|
||||
e_sin = _e * sin_lat;
|
||||
q0 = ALBERS_Q(sin_lat, ONE_MINUS_SQR(e_sin), e_sin);
|
||||
|
||||
sin_lat1 = sin(sp1);
|
||||
cos_lat1 = cos(sp1);
|
||||
es_sin1 = _es * sin_lat1;
|
||||
one_minus_sqr_es_sin1 = ONE_MINUS_SQR(es_sin1);
|
||||
m1 = ALBERS_M(cos_lat1, one_minus_sqr_es_sin1);
|
||||
q1 = ALBERS_Q(sin_lat1, one_minus_sqr_es_sin1, es_sin1);
|
||||
e_sin1 = _e * sin_lat1;
|
||||
one_minus_sqr_e_sin1 = ONE_MINUS_SQR(e_sin1);
|
||||
m1 = ALBERS_M(cos_lat1, one_minus_sqr_e_sin1);
|
||||
q1 = ALBERS_Q(sin_lat1, one_minus_sqr_e_sin1, e_sin1);
|
||||
|
||||
sqr_m1 = m1 * m1;
|
||||
if (fabs(sp1 - sp2) > 1.0e-10) {
|
||||
sin_lat2 = sin(sp2);
|
||||
cos_lat2 = cos(sp2);
|
||||
es_sin2 = _es * sin_lat2;
|
||||
one_minus_sqr_es_sin2 = ONE_MINUS_SQR(es_sin2);
|
||||
m2 = ALBERS_M(cos_lat2, one_minus_sqr_es_sin2);
|
||||
q2 = ALBERS_Q(sin_lat2, one_minus_sqr_es_sin2, es_sin2);
|
||||
e_sin2 = _e * sin_lat2;
|
||||
one_minus_sqr_e_sin2 = ONE_MINUS_SQR(e_sin2);
|
||||
m2 = ALBERS_M(cos_lat2, one_minus_sqr_e_sin2);
|
||||
q2 = ALBERS_Q(sin_lat2, one_minus_sqr_e_sin2, e_sin2);
|
||||
sqr_m2 = m2 * m2;
|
||||
_n = (sqr_m1 - sqr_m2) / (q2 - q1);
|
||||
} else
|
||||
@ -115,7 +114,7 @@ PointD AlbersEqual::ll2xy(const Coordinates &c) const
|
||||
{
|
||||
double dlam;
|
||||
double sin_lat;
|
||||
double es_sin;
|
||||
double e_sin;
|
||||
double q;
|
||||
double rho;
|
||||
double theta;
|
||||
@ -129,8 +128,8 @@ PointD AlbersEqual::ll2xy(const Coordinates &c) const
|
||||
dlam += M_2_PI;
|
||||
|
||||
sin_lat = sin(deg2rad(c.lat()));
|
||||
es_sin = _es * sin_lat;
|
||||
q = ALBERS_Q(sin_lat, ONE_MINUS_SQR(es_sin), es_sin);
|
||||
e_sin = _e * sin_lat;
|
||||
q = ALBERS_Q(sin_lat, ONE_MINUS_SQR(e_sin), e_sin);
|
||||
nq = _n * q;
|
||||
rho = (_C < nq) ? 0 : _a_over_n * sqrt(_C - nq);
|
||||
theta = _n * dlam;
|
||||
@ -147,7 +146,7 @@ Coordinates AlbersEqual::xy2ll(const PointD &p) const
|
||||
double rho, rho_n;
|
||||
double phi, delta_phi = 1.0;
|
||||
double sin_phi;
|
||||
double es_sin, one_minus_sqr_es_sin;
|
||||
double e_sin, one_minus_sqr_e_sin;
|
||||
double theta = 0.0;
|
||||
int count = 30;
|
||||
double tolerance = 4.85e-10;
|
||||
@ -170,7 +169,7 @@ Coordinates AlbersEqual::xy2ll(const PointD &p) const
|
||||
theta = atan2(dx, rho0_minus_dy);
|
||||
rho_n = rho * _n;
|
||||
q = (_C - (rho_n * rho_n) / _a2) / _n;
|
||||
qc = 1 - ((_one_minus_es2) / (_two_es)) * log((1.0 - _es) / (1.0 + _es));
|
||||
qc = 1 - ((_one_minus_es) / (_two_e)) * log((1.0 - _e) / (1.0 + _e));
|
||||
if (fabs(fabs(qc) - fabs(q)) > 1.0e-6) {
|
||||
q_over_2 = q / 2.0;
|
||||
if (q_over_2 > 1.0)
|
||||
@ -179,17 +178,17 @@ Coordinates AlbersEqual::xy2ll(const PointD &p) const
|
||||
lat = -M_PI_2;
|
||||
else {
|
||||
phi = asin(q_over_2);
|
||||
if (_es < 1.0e-10)
|
||||
if (_e < 1.0e-10)
|
||||
lat = phi;
|
||||
else {
|
||||
while ((fabs(delta_phi) > tolerance) && count) {
|
||||
sin_phi = sin(phi);
|
||||
es_sin = _es * sin_phi;
|
||||
one_minus_sqr_es_sin = ONE_MINUS_SQR(es_sin);
|
||||
delta_phi = (one_minus_sqr_es_sin * one_minus_sqr_es_sin)
|
||||
/ (2.0 * cos(phi)) * (q / (_one_minus_es2) - sin_phi
|
||||
/ one_minus_sqr_es_sin + (log((1.0 - es_sin)
|
||||
/ (1.0 + es_sin)) / (_two_es)));
|
||||
e_sin = _e * sin_phi;
|
||||
one_minus_sqr_e_sin = ONE_MINUS_SQR(e_sin);
|
||||
delta_phi = (one_minus_sqr_e_sin * one_minus_sqr_e_sin)
|
||||
/ (2.0 * cos(phi)) * (q / (_one_minus_es) - sin_phi
|
||||
/ one_minus_sqr_e_sin + (log((1.0 - e_sin)
|
||||
/ (1.0 + e_sin)) / (_two_e)));
|
||||
phi += delta_phi;
|
||||
count --;
|
||||
}
|
||||
|
@ -27,11 +27,11 @@ private:
|
||||
double _rho0;
|
||||
double _C;
|
||||
double _n;
|
||||
double _e;
|
||||
double _es;
|
||||
double _es2;
|
||||
double _a_over_n;
|
||||
double _one_minus_es2;
|
||||
double _two_es;
|
||||
double _one_minus_es;
|
||||
double _two_e;
|
||||
};
|
||||
|
||||
#endif // ALBERSEQUAL_H
|
||||
|
@ -113,7 +113,7 @@ Coordinates Datum::toWGS84(const Coordinates &c) const
|
||||
switch (_transformation) {
|
||||
case Helmert:
|
||||
return Geocentric::toGeodetic(helmert(Geocentric::fromGeodetic(c,
|
||||
*this)), WGS84);
|
||||
ellipsoid())), WGS84.ellipsoid());
|
||||
case Molodensky:
|
||||
return molodensky(c, *this, WGS84);
|
||||
default:
|
||||
@ -126,7 +126,7 @@ Coordinates Datum::fromWGS84(const Coordinates &c) const
|
||||
switch (_transformation) {
|
||||
case Helmert:
|
||||
return Geocentric::toGeodetic(helmertr(Geocentric::fromGeodetic(c,
|
||||
WGS84)), *this);
|
||||
WGS84.ellipsoid())), ellipsoid());
|
||||
case Molodensky:
|
||||
return molodensky(c, WGS84, *this);
|
||||
default:
|
||||
|
@ -66,6 +66,13 @@ void Ellipsoid::loadList(const QString &path)
|
||||
}
|
||||
}
|
||||
|
||||
Ellipsoid::Ellipsoid(double radius, double flattening)
|
||||
: _radius(radius), _flattening(flattening)
|
||||
{
|
||||
_es = 2.0 * flattening - flattening * flattening;
|
||||
_b = radius * (1.0 - flattening);
|
||||
}
|
||||
|
||||
#ifndef QT_NO_DEBUG
|
||||
QDebug operator<<(QDebug dbg, const Ellipsoid &ellipsoid)
|
||||
{
|
||||
|
@ -9,12 +9,13 @@
|
||||
class Ellipsoid
|
||||
{
|
||||
public:
|
||||
Ellipsoid() : _radius(NAN), _flattening(NAN) {}
|
||||
Ellipsoid(double radius, double flattening)
|
||||
: _radius(radius), _flattening(flattening) {}
|
||||
Ellipsoid() : _radius(NAN), _flattening(NAN), _es(NAN), _b(NAN) {}
|
||||
Ellipsoid(double radius, double flattening);
|
||||
|
||||
double radius() const {return _radius;}
|
||||
double flattening() const {return _flattening;}
|
||||
double es() const {return _es;}
|
||||
double b() const {return _b;}
|
||||
|
||||
bool isNull() const
|
||||
{return (std::isnan(_radius) && std::isnan(_flattening));}
|
||||
@ -27,6 +28,7 @@ public:
|
||||
private:
|
||||
double _radius;
|
||||
double _flattening;
|
||||
double _es, _b;
|
||||
|
||||
static QMap<int, Ellipsoid> WGS84();
|
||||
static QMap<int, Ellipsoid> _ellipsoids;
|
||||
|
@ -41,42 +41,34 @@ Defense.
|
||||
|
||||
*/
|
||||
|
||||
#include "datum.h"
|
||||
#include "ellipsoid.h"
|
||||
#include "geocentric.h"
|
||||
|
||||
|
||||
#define AD_C 1.0026000
|
||||
|
||||
Point3D Geocentric::fromGeodetic(const Coordinates &c, const Datum &datum)
|
||||
Point3D Geocentric::fromGeodetic(const Coordinates &c, const Ellipsoid *e)
|
||||
{
|
||||
const Ellipsoid *e = datum.ellipsoid();
|
||||
double e2 = 2.0 * e->flattening() - e->flattening() * e->flattening();
|
||||
|
||||
double lat = deg2rad(c.lat());
|
||||
double lon = deg2rad(c.lon());
|
||||
double slat = sin(lat);
|
||||
double slat2 = slat * slat;
|
||||
double clat = cos(lat);
|
||||
double Rn = e->radius() / (sqrt(1.0 - e2 * slat2));
|
||||
double Rn = e->radius() / (sqrt(1.0 - e->es() * slat2));
|
||||
|
||||
if (lon > M_PI)
|
||||
lon -= M_2_PI;
|
||||
|
||||
return Point3D(Rn * clat * cos(lon), Rn * clat * sin(lon),
|
||||
(Rn * (1 - e2)) * slat);
|
||||
(Rn * (1 - e->es())) * slat);
|
||||
}
|
||||
|
||||
Coordinates Geocentric::toGeodetic(const Point3D &p, const Datum &datum)
|
||||
Coordinates Geocentric::toGeodetic(const Point3D &p, const Ellipsoid *e)
|
||||
{
|
||||
const Ellipsoid *e = datum.ellipsoid();
|
||||
double b = e->radius() * (1.0 - e->flattening());
|
||||
double e2 = 2.0 * e->flattening() - e->flattening() * e->flattening();
|
||||
double ep2 = (1.0 / (1.0 - e2)) - 1.0;
|
||||
|
||||
double ep2 = (1.0 / (1.0 - e->es())) - 1.0;
|
||||
bool pole = false;
|
||||
double lat, lon;
|
||||
|
||||
|
||||
if (p.x() == 0.0) {
|
||||
if (p.y() > 0)
|
||||
lon = M_PI_2;
|
||||
@ -102,8 +94,8 @@ Coordinates Geocentric::toGeodetic(const Point3D &p, const Datum &datum)
|
||||
double Sin_B0 = T0 / S0;
|
||||
double Cos_B0 = W / S0;
|
||||
double Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0;
|
||||
double T1 = p.z() + b * ep2 * Sin3_B0;
|
||||
double Sum = W - e->radius() * e2 * Cos_B0 * Cos_B0 * Cos_B0;
|
||||
double T1 = p.z() + e->b() * ep2 * Sin3_B0;
|
||||
double Sum = W - e->radius() * e->es() * Cos_B0 * Cos_B0 * Cos_B0;
|
||||
double S1 = sqrt(T1*T1 + Sum * Sum);
|
||||
double Sin_p1 = T1 / S1;
|
||||
double Cos_p1 = Sum / S1;
|
||||
|
@ -4,7 +4,7 @@
|
||||
#include <cmath>
|
||||
#include "common/coordinates.h"
|
||||
|
||||
class Datum;
|
||||
class Ellipsoid;
|
||||
|
||||
class Point3D {
|
||||
public:
|
||||
@ -22,8 +22,8 @@ private:
|
||||
};
|
||||
|
||||
namespace Geocentric {
|
||||
Point3D fromGeodetic(const Coordinates &c, const Datum &datum);
|
||||
Coordinates toGeodetic(const Point3D &p, const Datum &datum);
|
||||
Point3D fromGeodetic(const Coordinates &c, const Ellipsoid *e);
|
||||
Coordinates toGeodetic(const Point3D &p, const Ellipsoid *e);
|
||||
}
|
||||
|
||||
#endif // GEOCENTRIC_H
|
||||
|
@ -16,19 +16,17 @@ LambertAzimuthal::LambertAzimuthal(const Ellipsoid *ellipsoid,
|
||||
_lon0 = deg2rad(longitudeOrigin);
|
||||
|
||||
_a = ellipsoid->radius();
|
||||
_es = ellipsoid->es();
|
||||
_e = sqrt(_es);
|
||||
|
||||
_es2 = 2.0 * ellipsoid->flattening() - ellipsoid->flattening()
|
||||
* ellipsoid->flattening();
|
||||
_es = sqrt(_es2);
|
||||
|
||||
double q0 = (1.0 - _es2) * ((sin(lat0) / (1.0 - _es2 * sin2(lat0)))
|
||||
- ((1.0/(2.0*_es)) * log((1.0 - _es * sin(lat0)) / (1.0 + _es
|
||||
double q0 = (1.0 - _es) * ((sin(lat0) / (1.0 - _es * sin2(lat0)))
|
||||
- ((1.0/(2.0*_e)) * log((1.0 - _e * sin(lat0)) / (1.0 + _e
|
||||
* sin(lat0)))));
|
||||
_qP = (1.0 - _es2) * ((1.0 / (1.0 - _es2)) - ((1.0/(2.0*_es))
|
||||
* log((1.0 - _es) / (1.0 + _es))));
|
||||
_qP = (1.0 - _es) * ((1.0 / (1.0 - _es)) - ((1.0/(2.0*_e))
|
||||
* log((1.0 - _e) / (1.0 + _e))));
|
||||
_beta0 = asin(q0 / _qP);
|
||||
_Rq = _a * sqrt(_qP / 2.0);
|
||||
_D = _a * (cos(lat0) / sqrt(1.0 - _es2 * sin2(lat0))) / (_Rq * cos(_beta0));
|
||||
_D = _a * (cos(lat0) / sqrt(1.0 - _es * sin2(lat0))) / (_Rq * cos(_beta0));
|
||||
}
|
||||
|
||||
PointD LambertAzimuthal::ll2xy(const Coordinates &c) const
|
||||
@ -36,8 +34,8 @@ PointD LambertAzimuthal::ll2xy(const Coordinates &c) const
|
||||
double lon = deg2rad(c.lon());
|
||||
double lat = deg2rad(c.lat());
|
||||
|
||||
double q = (1.0 - _es2) * ((sin(lat) / (1.0 - _es2 * sin2(lat)))
|
||||
- ((1.0/(2.0*_es)) * log((1.0 - _es * sin(lat)) / (1.0 + _es
|
||||
double q = (1.0 - _es) * ((sin(lat) / (1.0 - _es * sin2(lat)))
|
||||
- ((1.0/(2.0*_e)) * log((1.0 - _e * sin(lat)) / (1.0 + _e
|
||||
* sin(lat)))));
|
||||
double beta = asin(q / _qP);
|
||||
double B = _Rq * sqrt(2.0 / (1.0 + sin(_beta0) * sin(beta) + (cos(_beta0)
|
||||
@ -52,8 +50,8 @@ PointD LambertAzimuthal::ll2xy(const Coordinates &c) const
|
||||
|
||||
Coordinates LambertAzimuthal::xy2ll(const PointD &p) const
|
||||
{
|
||||
double es4 = _es2 * _es2;
|
||||
double es6 = _es2 * es4;
|
||||
double es4 = _es * _es;
|
||||
double es6 = _es * es4;
|
||||
|
||||
double rho = sqrt(sqr((p.x() - _falseEasting) / _D) + sqr(_D * (p.y()
|
||||
- _falseNorthing)));
|
||||
@ -64,7 +62,7 @@ Coordinates LambertAzimuthal::xy2ll(const PointD &p) const
|
||||
double lon = _lon0 + atan((p.x() - _falseEasting) * sin(C) / (_D * rho
|
||||
* cos(_beta0) * cos(C) - sqr(_D) * (p.y() - _falseNorthing) * sin(_beta0)
|
||||
* sin(C)));
|
||||
double lat = betaS + ((_es2/3.0 + 31.0*es4/180.0 + 517.0*es6/5040.0)
|
||||
double lat = betaS + ((_es/3.0 + 31.0*es4/180.0 + 517.0*es6/5040.0)
|
||||
* sin(2.0*betaS)) + ((23.0*es4/360.0 + 251.0*es6/3780.0) * sin(4.0*betaS))
|
||||
+ ((761.0*es6/45360.0)*sin(6.0*betaS));
|
||||
|
||||
|
@ -20,7 +20,7 @@ private:
|
||||
double _lon0;
|
||||
double _falseNorthing;
|
||||
double _falseEasting;
|
||||
double _a, _es, _es2, _qP, _beta0, _Rq, _D;
|
||||
double _a, _e, _es, _qP, _beta0, _Rq, _D;
|
||||
};
|
||||
|
||||
#endif // LAMBERTAZIMUTHAL_H
|
||||
|
@ -57,8 +57,7 @@ LambertConic1::LambertConic1(const Ellipsoid *ellipsoid, double latitudeOrigin,
|
||||
double longitudeOrigin, double scale, double falseEasting,
|
||||
double falseNorthing)
|
||||
{
|
||||
double es2;
|
||||
double es_sin;
|
||||
double e_sin;
|
||||
double m0;
|
||||
double lat_orig;
|
||||
|
||||
@ -71,16 +70,14 @@ LambertConic1::LambertConic1(const Ellipsoid *ellipsoid, double latitudeOrigin,
|
||||
_falseEasting = falseEasting;
|
||||
_falseNorthing = falseNorthing;
|
||||
|
||||
es2 = 2.0 * ellipsoid->flattening() - ellipsoid->flattening()
|
||||
* ellipsoid->flattening();
|
||||
_es = sqrt(es2);
|
||||
_es_over_2 = _es / 2.0;
|
||||
_e = sqrt(ellipsoid->es());
|
||||
_e_over_2 = _e / 2.0;
|
||||
|
||||
_n = sin(lat_orig);
|
||||
|
||||
es_sin = _es * sin(lat_orig);
|
||||
m0 = LAMBERT_m(cos(lat_orig), es_sin);
|
||||
_t0 = LAMBERT1_t(lat_orig, es_sin, _es_over_2);
|
||||
e_sin = _e * sin(lat_orig);
|
||||
m0 = LAMBERT_m(cos(lat_orig), e_sin);
|
||||
_t0 = LAMBERT1_t(lat_orig, e_sin, _e_over_2);
|
||||
|
||||
_rho0 = ellipsoid->radius() * scale * m0 / _n;
|
||||
|
||||
@ -97,7 +94,7 @@ PointD LambertConic1::ll2xy(const Coordinates &c) const
|
||||
|
||||
|
||||
if (fabs(fabs(lat) - M_PI_2) > 1.0e-10) {
|
||||
t = LAMBERT1_t(lat, _es * sin(lat), _es_over_2);
|
||||
t = LAMBERT1_t(lat, _e * sin(lat), _e_over_2);
|
||||
rho = _rho0 * pow(t / _t0, _n);
|
||||
} else
|
||||
rho = 0.0;
|
||||
@ -148,9 +145,9 @@ Coordinates LambertConic1::xy2ll(const PointD &p) const
|
||||
PHI = M_PI_2 - 2.0 * atan(t);
|
||||
while (fabs(PHI - tempPHI) > tolerance && count) {
|
||||
tempPHI = PHI;
|
||||
es_sin = _es * sin(PHI);
|
||||
es_sin = _e * sin(PHI);
|
||||
PHI = M_PI_2 - 2.0 * atan(t * pow((1.0 - es_sin) / (1.0 + es_sin),
|
||||
_es_over_2));
|
||||
_e_over_2));
|
||||
count--;
|
||||
}
|
||||
|
||||
|
@ -23,8 +23,8 @@ private:
|
||||
double _falseEasting;
|
||||
double _falseNorthing;
|
||||
|
||||
double _es;
|
||||
double _es_over_2;
|
||||
double _e;
|
||||
double _e_over_2;
|
||||
double _n;
|
||||
double _t0;
|
||||
double _rho0;
|
||||
|
@ -47,28 +47,29 @@ Defense.
|
||||
Mercator::Mercator(const Ellipsoid *ellipsoid, double latitudeOrigin,
|
||||
double longitudeOrigin, double falseEasting, double falseNorthing)
|
||||
{
|
||||
double es = ellipsoid->es();
|
||||
double es2;
|
||||
double es3;
|
||||
double es4;
|
||||
double sin_olat;
|
||||
|
||||
_a = ellipsoid->radius();
|
||||
_latitudeOrigin = deg2rad(latitudeOrigin);
|
||||
_longitudeOrigin = deg2rad(longitudeOrigin);
|
||||
if (_longitudeOrigin > M_PI)
|
||||
_longitudeOrigin -= M_2_PI;
|
||||
_falseNorthing = falseNorthing;
|
||||
_falseEasting = falseEasting;
|
||||
_es = 2 * ellipsoid->flattening() - ellipsoid->flattening()
|
||||
* ellipsoid->flattening();
|
||||
_e = sqrt(_es);
|
||||
|
||||
_a = ellipsoid->radius();
|
||||
_e = sqrt(es);
|
||||
|
||||
sin_olat = sin(_latitudeOrigin);
|
||||
_scaleFactor = 1.0 / (sqrt(1.e0 - _es * sin_olat * sin_olat)
|
||||
_scaleFactor = 1.0 / (sqrt(1.e0 - es * sin_olat * sin_olat)
|
||||
/ cos(_latitudeOrigin));
|
||||
es2 = _es * _es;
|
||||
es3 = es2 * _es;
|
||||
es4 = es3 * _es;
|
||||
_ab = _es / 2.e0 + 5.e0 * es2 / 24.e0 + es3 / 12.e0 + 13.e0 * es4 / 360.e0;
|
||||
es2 = es * es;
|
||||
es3 = es2 * es;
|
||||
es4 = es3 * es;
|
||||
_ab = es / 2.e0 + 5.e0 * es2 / 24.e0 + es3 / 12.e0 + 13.e0 * es4 / 360.e0;
|
||||
_bb = 7.e0 * es2 / 48.e0 + 29.e0 * es3 / 240.e0 + 811.e0 * es4 / 11520.e0;
|
||||
_cb = 7.e0 * es3 / 120.e0 + 81.e0 * es4 / 1120.e0;
|
||||
_db = 4279.e0 * es4 / 161280.e0;
|
||||
|
@ -17,7 +17,7 @@ public:
|
||||
virtual Coordinates xy2ll(const PointD &p) const;
|
||||
|
||||
private:
|
||||
double _a, _es, _e;
|
||||
double _a, _e;
|
||||
double _latitudeOrigin;
|
||||
double _longitudeOrigin;
|
||||
double _falseNorthing;
|
||||
|
@ -72,11 +72,9 @@ TransverseMercator::TransverseMercator(const Ellipsoid *ellipsoid,
|
||||
_falseEasting = falseEasting;
|
||||
_falseNorthing = falseNorthing;
|
||||
|
||||
_es = 2 * ellipsoid->flattening() - ellipsoid->flattening()
|
||||
* ellipsoid->flattening();
|
||||
_es = ellipsoid->es();
|
||||
_ebs = (1 / (1 - _es)) - 1;
|
||||
|
||||
b = _a * (1 - ellipsoid->flattening());
|
||||
b = ellipsoid->b();
|
||||
|
||||
tn = (_a - b) / (_a + b);
|
||||
tn2 = tn * tn;
|
||||
|
@ -24,7 +24,6 @@ private:
|
||||
double _falseEasting;
|
||||
double _falseNorthing;
|
||||
double _a;
|
||||
|
||||
double _es;
|
||||
double _ebs;
|
||||
double _ap, _bp, _cp, _dp, _ep;
|
||||
|
Loading…
x
Reference in New Issue
Block a user