#include "matrix.h" #include "transform.h" #define NULL_QTRANSFORM 0,0,0,0,0,0,0,0,0 void Transform::simple(const ReferencePoint &p1, const ReferencePoint &p2) { if (p1.xy().x() == p2.xy().x() || p1.xy().y() == p2.xy().y()) { _errorString = "Invalid reference points tuple"; return; } double sX = (p1.xy().x() - p2.xy().x()) / (p1.pp().x() - p2.pp().x()); double sY = (p2.xy().y() - p1.xy().y()) / (p2.pp().y() - p1.pp().y()); double dX = p2.xy().x() - p2.pp().x() * sX; double dY = p1.xy().y() - p1.pp().y() * sY; _proj2img = QTransform(sX, 0, 0, sY, dX, dY); _img2proj = _proj2img.inverted(); } void Transform::affine(const QList &points) { MatrixD c(3, 2); for (int i = 0; i < c.h(); i++) { for (int j = 0; j < c.w(); j++) { for (int k = 0; k < points.size(); k++) { double f[3], t[2]; f[0] = points.at(k).pp().x(); f[1] = points.at(k).pp().y(); f[2] = 1.0; t[0] = points.at(k).xy().x(); t[1] = points.at(k).xy().y(); c.at(i,j) += f[i] * t[j]; } } } MatrixD Q(3, 3); for (int qi = 0; qi < points.size(); qi++) { double v[3]; v[0] = points.at(qi).pp().x(); v[1] = points.at(qi).pp().y(); v[2] = 1.0; for (int i = 0; i < Q.h(); i++) for (int j = 0; j < Q.w(); j++) Q.at(i,j) += v[i] * v[j]; } MatrixD M(Q.augemented(c)); if (!M.eliminate()) { _errorString = "Singular transformation matrix"; return; } _proj2img = QTransform(M.at(0,3), M.at(0,4), M.at(1,3), M.at(1,4), M.at(2,3), M.at(2,4)); _img2proj = _proj2img.inverted(); } Transform::Transform() : _proj2img(NULL_QTRANSFORM), _img2proj(NULL_QTRANSFORM) { } Transform::Transform(const QList &points) : _proj2img(NULL_QTRANSFORM), _img2proj(NULL_QTRANSFORM) { if (points.count() < 2) _errorString = "Insufficient number of reference points"; else if (points.size() == 2) simple(points.at(0), points.at(1)); else affine(points); } Transform::Transform(const ReferencePoint &p1, const ReferencePoint &p2) : _proj2img(NULL_QTRANSFORM), _img2proj(NULL_QTRANSFORM) { simple(p1, p2); } Transform::Transform(const ReferencePoint &p, const PointD &scale) : _proj2img(NULL_QTRANSFORM), _img2proj(NULL_QTRANSFORM) { if (scale.x() == 0.0 || scale.y() == 0.0) { _errorString = "Invalid scale factor"; return; } _img2proj = QTransform(scale.x(), 0, 0, -scale.y(), p.pp().x() - p.xy().x() / scale.x(), p.pp().y() + p.xy().x() / scale.y()); _proj2img = _img2proj.inverted(); } Transform::Transform(double matrix[16]) : _proj2img(NULL_QTRANSFORM), _img2proj(NULL_QTRANSFORM) { _img2proj = QTransform(matrix[0], matrix[1], matrix[4], matrix[5], matrix[3], matrix[7]); if (!_img2proj.isInvertible()) _errorString = "Singular transformation matrix"; else _proj2img = _img2proj.inverted(); } #ifndef QT_NO_DEBUG QDebug operator<<(QDebug dbg, const ReferencePoint &p) { dbg.nospace() << "ReferencePoint(" << p.xy() << ", " << p.pp() << ")"; return dbg.space(); } #endif // QT_NO_DEBUG