mirror of
https://github.com/tumic0/GPXSee.git
synced 2024-11-28 05:34:47 +01:00
1252 lines
34 KiB
C++
1252 lines
34 KiB
C++
// TITLE
|
|
//
|
|
// R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING
|
|
//
|
|
// DESCRIPTION
|
|
//
|
|
// A C++ templated version of the RTree algorithm.
|
|
// For more information please read the comments in RTree.h
|
|
//
|
|
// AUTHORS
|
|
//
|
|
// * 1983 Original algorithm and test code by Antonin Guttman
|
|
// and Michael Stonebraker, UC Berkely
|
|
// * 1994 ANSI C ported from original test code by Melinda Green
|
|
// (melinda@superliminal.com)
|
|
// * 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
|
|
// * 2004 Templated C++ port by Greg Douglas
|
|
// * 2018 Iterator fix and Qt macros by Martin Tuma
|
|
//
|
|
// LICENSE:
|
|
//
|
|
// Entirely free for all uses. Enjoy!
|
|
|
|
#ifndef RTREE_H
|
|
#define RTREE_H
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <QtGlobal>
|
|
|
|
|
|
#define RTREE_TEMPLATE template<class DATATYPE, class ELEMTYPE, int NUMDIMS, \
|
|
class ELEMTYPEREAL, int TMAXNODES, int TMINNODES>
|
|
#define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, \
|
|
TMINNODES>
|
|
|
|
// This version does not contain a fixed memory allocator, fill in lines with
|
|
// EXAMPLE to implement one.
|
|
#define RTREE_DONT_USE_MEMPOOLS
|
|
// Better split classification, may be slower on some systems
|
|
#define RTREE_USE_SPHERICAL_VOLUME
|
|
|
|
|
|
/// \class RTree
|
|
///
|
|
/// Implementation of RTree, a multidimensional bounding rectangle tree.
|
|
/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
|
|
///
|
|
/// This modified, templated C++ version by Greg Douglas at Auran
|
|
/// (http://www.auran.com)
|
|
///
|
|
/// \c DATATYPE Referenced data, should be int, void*, obj* etc. no larger than
|
|
/// sizeof<void*> and simple type
|
|
/// \c ELEMTYPE Type of element such as int or float
|
|
/// \c NUMDIMS Number of dimensions such as 2 or 3
|
|
/// \c ELEMTYPEREAL Type of element that allows fractional and large values such
|
|
/// as float or double, for use in volume calcs
|
|
///
|
|
/// NOTES: Inserting and removing data requires the knowledge of its constant
|
|
/// Minimal Bounding Rectangle. This version uses new/delete for nodes,
|
|
/// I recommend using a fixed size allocator for efficiency. Instead of using
|
|
/// a callback function for returned results, I recommend and efficient
|
|
/// pre-sized, grow-only memory array similar to MFC CArray or STL Vector for
|
|
/// returning search query result.
|
|
///
|
|
template<class DATATYPE, class ELEMTYPE, int NUMDIMS,
|
|
class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
|
|
class RTree
|
|
{
|
|
protected:
|
|
struct Node; // Fwd decl. Used by other internal structs and iterator
|
|
|
|
public:
|
|
enum
|
|
{
|
|
MAXNODES = TMAXNODES, ///< Max elements in node
|
|
MINNODES = TMINNODES, ///< Min elements in node
|
|
};
|
|
|
|
public:
|
|
|
|
RTree();
|
|
RTree(const RTree &) = delete;
|
|
virtual ~RTree();
|
|
|
|
/// Insert entry
|
|
/// \param a_min Min of bounding rect
|
|
/// \param a_max Max of bounding rect
|
|
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers
|
|
/// not allowed.
|
|
void Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
|
|
const DATATYPE& a_dataId);
|
|
|
|
/// Remove entry
|
|
/// \param a_min Min of bounding rect
|
|
/// \param a_max Max of bounding rect
|
|
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers
|
|
/// not allowed.
|
|
void Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
|
|
const DATATYPE& a_dataId);
|
|
|
|
/// Find all within search rectangle
|
|
/// \param a_min Min of search bounding rect
|
|
/// \param a_max Max of search bounding rect
|
|
/// \param a_resultCallback Callback function to return result. Callback
|
|
/// should return 'true' to continue searching
|
|
/// \param a_context User context to pass as parameter to a_resultCallback
|
|
/// \return Returns the number of entries found
|
|
int Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
|
|
bool a_resultCallback(DATATYPE a_data, void* a_context),
|
|
void* a_context) const;
|
|
|
|
/// Remove all entries from tree
|
|
void RemoveAll();
|
|
|
|
/// Count the data elements in this container. This is slow as no internal
|
|
/// counter is maintained.
|
|
int Count();
|
|
|
|
|
|
/// Iterator is not remove safe.
|
|
class Iterator
|
|
{
|
|
private:
|
|
// Max stack size. Allows almost n^32 where n is number of branches in
|
|
// node
|
|
enum { MAX_STACK = 32 };
|
|
|
|
struct StackElement
|
|
{
|
|
Node* m_node;
|
|
int m_branchIndex;
|
|
};
|
|
|
|
public:
|
|
Iterator() { Init(); }
|
|
|
|
~Iterator() { }
|
|
|
|
/// Is iterator invalid
|
|
bool IsNull() { return (m_tos <= 0); }
|
|
|
|
/// Is iterator pointing to valid data
|
|
bool IsNotNull() { return (m_tos > 0); }
|
|
|
|
/// Access the current data element.
|
|
DATATYPE& operator*()
|
|
{
|
|
Q_ASSERT(IsNotNull());
|
|
StackElement& curTos = m_stack[m_tos - 1];
|
|
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
|
|
}
|
|
|
|
/// Access the current data element.
|
|
const DATATYPE& operator*() const
|
|
{
|
|
Q_ASSERT(IsNotNull());
|
|
StackElement& curTos = m_stack[m_tos - 1];
|
|
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
|
|
}
|
|
|
|
/// Find the next data element
|
|
bool operator++() { return FindNextData(); }
|
|
|
|
/// Get the bounds for this node
|
|
void GetBounds(ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS])
|
|
{
|
|
Q_ASSERT(IsNotNull());
|
|
StackElement& curTos = m_stack[m_tos - 1];
|
|
Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex];
|
|
|
|
for (int index = 0; index < NUMDIMS; ++index) {
|
|
a_min[index] = curBranch.m_rect.m_min[index];
|
|
a_max[index] = curBranch.m_rect.m_max[index];
|
|
}
|
|
}
|
|
|
|
private:
|
|
// Reset iterator
|
|
void Init() { m_tos = 0; }
|
|
|
|
// Find the next data element in the tree (For internal use only)
|
|
bool FindNextData()
|
|
{
|
|
for (;;) {
|
|
if (m_tos <= 0)
|
|
return false;
|
|
|
|
// Copy stack top cause it may change as we use it
|
|
StackElement curTos = Pop();
|
|
|
|
if (curTos.m_node->IsLeaf()) {
|
|
// Keep walking through data while we can
|
|
if (curTos.m_branchIndex+1 < curTos.m_node->m_count) {
|
|
// There is more data, just point to the next one
|
|
Push(curTos.m_node, curTos.m_branchIndex + 1);
|
|
return true;
|
|
}
|
|
// No more data, so it will fall back to previous level
|
|
} else {
|
|
if (curTos.m_branchIndex+1 < curTos.m_node->m_count) {
|
|
// Push sibling on for future tree walk
|
|
// This is the 'fall back' node when we finish with
|
|
// the current level
|
|
Push(curTos.m_node, curTos.m_branchIndex + 1);
|
|
}
|
|
// Since cur node is not a leaf, push first of next level to
|
|
// get deeper into the tree
|
|
Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
|
|
Push(nextLevelnode, 0);
|
|
|
|
// If we pushed on a new leaf, exit as the data is ready at
|
|
// TOS
|
|
if (nextLevelnode->IsLeaf())
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Push node and branch onto iteration stack
|
|
void Push(Node* a_node, int a_branchIndex)
|
|
{
|
|
m_stack[m_tos].m_node = a_node;
|
|
m_stack[m_tos].m_branchIndex = a_branchIndex;
|
|
++m_tos;
|
|
Q_ASSERT(m_tos <= MAX_STACK);
|
|
}
|
|
|
|
// Pop element off iteration stack
|
|
StackElement& Pop()
|
|
{
|
|
Q_ASSERT(m_tos > 0);
|
|
--m_tos;
|
|
return m_stack[m_tos];
|
|
}
|
|
|
|
// Stack as we are doing iteration instead of recursion
|
|
StackElement m_stack[MAX_STACK];
|
|
// Top Of Stack index
|
|
int m_tos;
|
|
|
|
friend class RTree;
|
|
};
|
|
|
|
// Get 'first' for iteration
|
|
void GetFirst(Iterator& a_it)
|
|
{
|
|
a_it.Init();
|
|
Node* first = m_root;
|
|
|
|
while (first) {
|
|
if (first->IsInternalNode() && first->m_count > 1) {
|
|
a_it.Push(first, 1); // Descend sibling branch later
|
|
} else if(first->IsLeaf()) {
|
|
if(first->m_count) {
|
|
a_it.Push(first, 0);
|
|
}
|
|
break;
|
|
}
|
|
first = first->m_branch[0].m_child;
|
|
}
|
|
}
|
|
|
|
// Get Next for iteration
|
|
void GetNext(Iterator& a_it) { ++a_it; }
|
|
|
|
// Is iterator NULL, or at end?
|
|
bool IsNull(Iterator& a_it) { return a_it.IsNull(); }
|
|
|
|
// Get object at iterator position
|
|
DATATYPE& GetAt(Iterator& a_it) { return *a_it; }
|
|
|
|
protected:
|
|
// Minimal bounding rectangle (n-dimensional)
|
|
struct Rect
|
|
{
|
|
ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box
|
|
ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box
|
|
};
|
|
|
|
/// May be data or may be another subtree
|
|
/// The parents level determines this.
|
|
/// If the parents level is 0, then this is data
|
|
struct Branch
|
|
{
|
|
Rect m_rect; ///< Bounds
|
|
union
|
|
{
|
|
Node* m_child; ///< Child node
|
|
DATATYPE m_data; ///< Data Id or Ptr
|
|
};
|
|
};
|
|
|
|
/// Node for each branch level
|
|
struct Node
|
|
{
|
|
// Not a leaf, but a internal node
|
|
bool IsInternalNode() { return (m_level > 0); }
|
|
// A leaf, contains data
|
|
bool IsLeaf() { return (m_level == 0); }
|
|
|
|
int m_count; ///< Count
|
|
int m_level; ///< Leaf is zero, others positive
|
|
Branch m_branch[MAXNODES]; ///< Branch
|
|
};
|
|
|
|
/// A link list of nodes for reinsertion after a delete operation
|
|
struct ListNode
|
|
{
|
|
ListNode* m_next; ///< Next in list
|
|
Node* m_node; ///< Node
|
|
};
|
|
|
|
/// Variables for finding a split partition
|
|
struct PartitionVars
|
|
{
|
|
int m_partition[MAXNODES+1];
|
|
int m_total;
|
|
int m_minFill;
|
|
int m_taken[MAXNODES+1];
|
|
int m_count[2];
|
|
Rect m_cover[2];
|
|
ELEMTYPEREAL m_area[2];
|
|
|
|
Branch m_branchBuf[MAXNODES+1];
|
|
int m_branchCount;
|
|
Rect m_coverSplit;
|
|
ELEMTYPEREAL m_coverSplitArea;
|
|
};
|
|
|
|
Node* AllocNode();
|
|
void FreeNode(Node* a_node);
|
|
void InitNode(Node* a_node);
|
|
void InitRect(Rect* a_rect);
|
|
bool InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
|
|
Node** a_newNode, int a_level);
|
|
bool InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root,
|
|
int a_level);
|
|
Rect NodeCover(Node* a_node);
|
|
bool AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode);
|
|
void DisconnectBranch(Node* a_node, int a_index);
|
|
int PickBranch(Rect* a_rect, Node* a_node);
|
|
Rect CombineRect(Rect* a_rectA, Rect* a_rectB);
|
|
void SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode);
|
|
ELEMTYPEREAL RectSphericalVolume(Rect* a_rect);
|
|
ELEMTYPEREAL RectVolume(Rect* a_rect);
|
|
ELEMTYPEREAL CalcRectVolume(Rect* a_rect);
|
|
void GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars);
|
|
void ChoosePartition(PartitionVars* a_parVars, int a_minFill);
|
|
void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars);
|
|
void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill);
|
|
void PickSeeds(PartitionVars* a_parVars);
|
|
void Classify(int a_index, int a_group, PartitionVars* a_parVars);
|
|
bool RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root);
|
|
bool RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
|
|
ListNode** a_listNode);
|
|
ListNode* AllocListNode();
|
|
void FreeListNode(ListNode* a_listNode);
|
|
bool Overlap(Rect* a_rectA, Rect* a_rectB) const;
|
|
void ReInsert(Node* a_node, ListNode** a_listNode);
|
|
bool Search(Node* a_node, Rect* a_rect, int& a_foundCount,
|
|
bool a_resultCallback(DATATYPE a_data, void* a_context),
|
|
void* a_context) const;
|
|
void RemoveAllRec(Node* a_node);
|
|
void Reset();
|
|
void CountRec(Node* a_node, int& a_count);
|
|
|
|
/// Root of tree
|
|
Node* m_root;
|
|
/// Unit sphere constant for required number of dimensions
|
|
ELEMTYPEREAL m_unitSphereVolume;
|
|
};
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
RTREE_QUAL::RTree()
|
|
{
|
|
Q_ASSERT(MAXNODES > MINNODES);
|
|
Q_ASSERT(MINNODES > 0);
|
|
|
|
// We only support machine word size simple data type eg. integer index or
|
|
// object pointer. Since we are storing as union with non data branch
|
|
Q_ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));
|
|
|
|
// Precomputed volumes of the unit spheres for the first few dimensions
|
|
const float UNIT_SPHERE_VOLUMES[] = {
|
|
0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2
|
|
4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5
|
|
5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8
|
|
3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11
|
|
1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14
|
|
0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17
|
|
0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20
|
|
};
|
|
|
|
m_root = AllocNode();
|
|
m_root->m_level = 0;
|
|
m_unitSphereVolume = (ELEMTYPEREAL)UNIT_SPHERE_VOLUMES[NUMDIMS];
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
RTREE_QUAL::~RTree()
|
|
{
|
|
Reset(); // Free, or reset node memory
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::Insert(const ELEMTYPE a_min[NUMDIMS],
|
|
const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
|
|
{
|
|
#ifndef QT_NO_DEBUG
|
|
for (int index=0; index<NUMDIMS; ++index)
|
|
Q_ASSERT(a_min[index] <= a_max[index]);
|
|
#endif // QT_NO_DEBUG
|
|
|
|
Rect rect;
|
|
|
|
for (int axis=0; axis<NUMDIMS; ++axis) {
|
|
rect.m_min[axis] = a_min[axis];
|
|
rect.m_max[axis] = a_max[axis];
|
|
}
|
|
|
|
InsertRect(&rect, a_dataId, &m_root, 0);
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::Remove(const ELEMTYPE a_min[NUMDIMS],
|
|
const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
|
|
{
|
|
#ifndef QT_NO_DEBUG
|
|
for (int index=0; index<NUMDIMS; ++index)
|
|
Q_ASSERT(a_min[index] <= a_max[index]);
|
|
#endif // QT_NO_DEBUG
|
|
|
|
Rect rect;
|
|
|
|
for (int axis=0; axis<NUMDIMS; ++axis) {
|
|
rect.m_min[axis] = a_min[axis];
|
|
rect.m_max[axis] = a_max[axis];
|
|
}
|
|
|
|
RemoveRect(&rect, a_dataId, &m_root);
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
int RTREE_QUAL::Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
|
|
bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context) const
|
|
{
|
|
#ifndef QT_NO_DEBUG
|
|
for (int index=0; index<NUMDIMS; ++index)
|
|
Q_ASSERT(a_min[index] <= a_max[index]);
|
|
#endif // QT_NO_DEBUG
|
|
|
|
Rect rect;
|
|
|
|
for (int axis=0; axis<NUMDIMS; ++axis) {
|
|
rect.m_min[axis] = a_min[axis];
|
|
rect.m_max[axis] = a_max[axis];
|
|
}
|
|
|
|
// NOTE: May want to return search result another way, perhaps returning
|
|
// the number of found elements here.
|
|
|
|
int foundCount = 0;
|
|
Search(m_root, &rect, foundCount, a_resultCallback, a_context);
|
|
|
|
return foundCount;
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
int RTREE_QUAL::Count()
|
|
{
|
|
int count = 0;
|
|
CountRec(m_root, count);
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::CountRec(Node* a_node, int& a_count)
|
|
{
|
|
if (a_node->IsInternalNode()) { // not a leaf node
|
|
for (int index = 0; index < a_node->m_count; ++index)
|
|
CountRec(a_node->m_branch[index].m_child, a_count);
|
|
} else { // A leaf node
|
|
a_count += a_node->m_count;
|
|
}
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::RemoveAll()
|
|
{
|
|
// Delete all existing nodes
|
|
Reset();
|
|
|
|
m_root = AllocNode();
|
|
m_root->m_level = 0;
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::Reset()
|
|
{
|
|
#ifdef RTREE_DONT_USE_MEMPOOLS
|
|
// Delete all existing nodes
|
|
RemoveAllRec(m_root);
|
|
#else // RTREE_DONT_USE_MEMPOOLS
|
|
// Just reset memory pools. We are not using complex types
|
|
// EXAMPLE
|
|
#endif // RTREE_DONT_USE_MEMPOOLS
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::RemoveAllRec(Node* a_node)
|
|
{
|
|
Q_ASSERT(a_node);
|
|
Q_ASSERT(a_node->m_level >= 0);
|
|
|
|
if (a_node->IsInternalNode()) { // This is an internal node in the tree
|
|
for (int index=0; index < a_node->m_count; ++index)
|
|
RemoveAllRec(a_node->m_branch[index].m_child);
|
|
}
|
|
FreeNode(a_node);
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode()
|
|
{
|
|
Node* newNode;
|
|
#ifdef RTREE_DONT_USE_MEMPOOLS
|
|
newNode = new Node;
|
|
#else // RTREE_DONT_USE_MEMPOOLS
|
|
// EXAMPLE
|
|
#endif // RTREE_DONT_USE_MEMPOOLS
|
|
InitNode(newNode);
|
|
return newNode;
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::FreeNode(Node* a_node)
|
|
{
|
|
Q_ASSERT(a_node);
|
|
|
|
#ifdef RTREE_DONT_USE_MEMPOOLS
|
|
delete a_node;
|
|
#else // RTREE_DONT_USE_MEMPOOLS
|
|
// EXAMPLE
|
|
#endif // RTREE_DONT_USE_MEMPOOLS
|
|
}
|
|
|
|
|
|
// Allocate space for a node in the list used in DeletRect to
|
|
// store Nodes that are too empty.
|
|
RTREE_TEMPLATE
|
|
typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode()
|
|
{
|
|
#ifdef RTREE_DONT_USE_MEMPOOLS
|
|
return new ListNode;
|
|
#else // RTREE_DONT_USE_MEMPOOLS
|
|
// EXAMPLE
|
|
#endif // RTREE_DONT_USE_MEMPOOLS
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::FreeListNode(ListNode* a_listNode)
|
|
{
|
|
#ifdef RTREE_DONT_USE_MEMPOOLS
|
|
delete a_listNode;
|
|
#else // RTREE_DONT_USE_MEMPOOLS
|
|
// EXAMPLE
|
|
#endif // RTREE_DONT_USE_MEMPOOLS
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::InitNode(Node* a_node)
|
|
{
|
|
a_node->m_count = 0;
|
|
a_node->m_level = -1;
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::InitRect(Rect* a_rect)
|
|
{
|
|
for (int index = 0; index < NUMDIMS; ++index) {
|
|
a_rect->m_min[index] = (ELEMTYPE)0;
|
|
a_rect->m_max[index] = (ELEMTYPE)0;
|
|
}
|
|
}
|
|
|
|
|
|
// Inserts a new data rectangle into the index structure.
|
|
// Recursively descends tree, propagates splits back up.
|
|
// Returns 0 if node was not split. Old node updated.
|
|
// If node was split, returns 1 and sets the pointer pointed to by
|
|
// new_node to point to the new node. Old node updated to become one of two.
|
|
// The level argument specifies the number of steps up from the leaf
|
|
// level to insert; e.g. a data rectangle goes in at level = 0.
|
|
RTREE_TEMPLATE
|
|
bool RTREE_QUAL::InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
|
|
Node** a_newNode, int a_level)
|
|
{
|
|
Q_ASSERT(a_rect && a_node && a_newNode);
|
|
Q_ASSERT(a_level >= 0 && a_level <= a_node->m_level);
|
|
|
|
int index;
|
|
Branch branch;
|
|
Node* otherNode;
|
|
|
|
// Still above level for insertion, go down tree recursively
|
|
if (a_node->m_level > a_level) {
|
|
index = PickBranch(a_rect, a_node);
|
|
if (!InsertRectRec(a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level)) {
|
|
// Child was not split
|
|
a_node->m_branch[index].m_rect = CombineRect(a_rect, &(a_node->m_branch[index].m_rect));
|
|
return false;
|
|
} else { // Child was split
|
|
a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
|
|
branch.m_child = otherNode;
|
|
branch.m_rect = NodeCover(otherNode);
|
|
return AddBranch(&branch, a_node, a_newNode);
|
|
}
|
|
// Have reached level for insertion. Add rect, split if necessary
|
|
} else if (a_node->m_level == a_level) {
|
|
branch.m_rect = *a_rect;
|
|
branch.m_child = (Node*) a_id;
|
|
// Child field of leaves contains id of data record
|
|
return AddBranch(&branch, a_node, a_newNode);
|
|
} else {
|
|
// Should never occur
|
|
Q_ASSERT(0);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Insert a data rectangle into an index structure.
|
|
// InsertRect provides for splitting the root;
|
|
// returns 1 if root was split, 0 if it was not.
|
|
// The level argument specifies the number of steps up from the leaf
|
|
// level to insert; e.g. a data rectangle goes in at level = 0.
|
|
// InsertRect2 does the recursion.
|
|
//
|
|
RTREE_TEMPLATE
|
|
bool RTREE_QUAL::InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root,
|
|
int a_level)
|
|
{
|
|
Q_ASSERT(a_rect && a_root);
|
|
Q_ASSERT(a_level >= 0 && a_level <= (*a_root)->m_level);
|
|
#ifndef QT_NO_DEBUG
|
|
for (int index=0; index < NUMDIMS; ++index)
|
|
Q_ASSERT(a_rect->m_min[index] <= a_rect->m_max[index]);
|
|
#endif // QT_NO_DEBUG
|
|
|
|
Node* newRoot;
|
|
Node* newNode;
|
|
Branch branch;
|
|
|
|
// Root split
|
|
if (InsertRectRec(a_rect, a_id, *a_root, &newNode, a_level)) {
|
|
newRoot = AllocNode(); // Grow tree taller and new root
|
|
newRoot->m_level = (*a_root)->m_level + 1;
|
|
branch.m_rect = NodeCover(*a_root);
|
|
branch.m_child = *a_root;
|
|
AddBranch(&branch, newRoot, NULL);
|
|
branch.m_rect = NodeCover(newNode);
|
|
branch.m_child = newNode;
|
|
AddBranch(&branch, newRoot, NULL);
|
|
*a_root = newRoot;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Find the smallest rectangle that includes all rectangles in branches of
|
|
// a node.
|
|
RTREE_TEMPLATE
|
|
typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover(Node* a_node)
|
|
{
|
|
Q_ASSERT(a_node);
|
|
|
|
int firstTime = true;
|
|
Rect rect;
|
|
InitRect(&rect);
|
|
|
|
for (int index = 0; index < a_node->m_count; ++index) {
|
|
if (firstTime) {
|
|
rect = a_node->m_branch[index].m_rect;
|
|
firstTime = false;
|
|
} else {
|
|
rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect));
|
|
}
|
|
}
|
|
|
|
return rect;
|
|
}
|
|
|
|
|
|
// Add a branch to a node. Split the node if necessary.
|
|
// Returns 0 if node not split. Old node updated.
|
|
// Returns 1 if node split, sets *new_node to address of new node.
|
|
// Old node updated, becomes one of two.
|
|
RTREE_TEMPLATE
|
|
bool RTREE_QUAL::AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode)
|
|
{
|
|
Q_ASSERT(a_branch);
|
|
Q_ASSERT(a_node);
|
|
|
|
if (a_node->m_count < MAXNODES) { // Split won't be necessary
|
|
a_node->m_branch[a_node->m_count] = *a_branch;
|
|
++a_node->m_count;
|
|
|
|
return false;
|
|
} else {
|
|
Q_ASSERT(a_newNode);
|
|
|
|
SplitNode(a_node, a_branch, a_newNode);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
// Disconnect a dependent node.
|
|
// Caller must return (or stop using iteration index) after this as count has
|
|
// changed
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::DisconnectBranch(Node* a_node, int a_index)
|
|
{
|
|
Q_ASSERT(a_node && (a_index >= 0) && (a_index < MAXNODES));
|
|
Q_ASSERT(a_node->m_count > 0);
|
|
|
|
// Remove element by swapping with the last element to prevent gaps in array
|
|
a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
|
|
|
|
--a_node->m_count;
|
|
}
|
|
|
|
|
|
// Pick a branch. Pick the one that will need the smallest increase
|
|
// in area to accomodate the new rectangle. This will result in the
|
|
// least total area for the covering rectangles in the current node.
|
|
// In case of a tie, pick the one which was smaller before, to get
|
|
// the best resolution when searching.
|
|
RTREE_TEMPLATE
|
|
int RTREE_QUAL::PickBranch(Rect* a_rect, Node* a_node)
|
|
{
|
|
Q_ASSERT(a_rect && a_node);
|
|
|
|
bool firstTime = true;
|
|
ELEMTYPEREAL increase;
|
|
ELEMTYPEREAL bestIncr = (ELEMTYPEREAL)-1;
|
|
ELEMTYPEREAL area;
|
|
ELEMTYPEREAL bestArea;
|
|
int best = 0;
|
|
Rect tempRect;
|
|
|
|
for (int index=0; index < a_node->m_count; ++index) {
|
|
Rect* curRect = &a_node->m_branch[index].m_rect;
|
|
area = CalcRectVolume(curRect);
|
|
tempRect = CombineRect(a_rect, curRect);
|
|
increase = CalcRectVolume(&tempRect) - area;
|
|
|
|
if ((increase < bestIncr) || firstTime) {
|
|
best = index;
|
|
bestArea = area;
|
|
bestIncr = increase;
|
|
firstTime = false;
|
|
} else if ((increase == bestIncr) && (area < bestArea)) {
|
|
best = index;
|
|
bestArea = area;
|
|
bestIncr = increase;
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
|
|
|
|
// Combine two rectangles into larger one containing both
|
|
RTREE_TEMPLATE
|
|
typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect(Rect* a_rectA, Rect* a_rectB)
|
|
{
|
|
Q_ASSERT(a_rectA && a_rectB);
|
|
|
|
Rect newRect;
|
|
|
|
for (int index = 0; index < NUMDIMS; ++index) {
|
|
newRect.m_min[index] = qMin(a_rectA->m_min[index], a_rectB->m_min[index]);
|
|
newRect.m_max[index] = qMax(a_rectA->m_max[index], a_rectB->m_max[index]);
|
|
}
|
|
|
|
return newRect;
|
|
}
|
|
|
|
|
|
|
|
// Split a node.
|
|
// Divides the nodes branches and the extra one between two nodes.
|
|
// Old node is one of the new ones, and one really new one is created.
|
|
// Tries more than one method for choosing a partition, uses best result.
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode)
|
|
{
|
|
Q_ASSERT(a_node);
|
|
Q_ASSERT(a_branch);
|
|
|
|
// Could just use local here, but member or external is faster since it is
|
|
// reused
|
|
PartitionVars localVars;
|
|
PartitionVars* parVars = &localVars;
|
|
int level;
|
|
|
|
// Load all the branches into a buffer, initialize old node
|
|
level = a_node->m_level;
|
|
GetBranches(a_node, a_branch, parVars);
|
|
|
|
// Find partition
|
|
ChoosePartition(parVars, MINNODES);
|
|
|
|
// Put branches from buffer into 2 nodes according to chosen partition
|
|
*a_newNode = AllocNode();
|
|
(*a_newNode)->m_level = a_node->m_level = level;
|
|
LoadNodes(a_node, *a_newNode, parVars);
|
|
|
|
Q_ASSERT((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total);
|
|
}
|
|
|
|
|
|
// Calculate the n-dimensional volume of a rectangle
|
|
RTREE_TEMPLATE
|
|
ELEMTYPEREAL RTREE_QUAL::RectVolume(Rect* a_rect)
|
|
{
|
|
Q_ASSERT(a_rect);
|
|
|
|
ELEMTYPEREAL volume = (ELEMTYPEREAL)1;
|
|
|
|
for (int index=0; index<NUMDIMS; ++index)
|
|
volume *= a_rect->m_max[index] - a_rect->m_min[index];
|
|
|
|
Q_ASSERT(volume >= (ELEMTYPEREAL)0);
|
|
|
|
return volume;
|
|
}
|
|
|
|
|
|
// The exact volume of the bounding sphere for the given Rect
|
|
RTREE_TEMPLATE
|
|
ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume(Rect* a_rect)
|
|
{
|
|
Q_ASSERT(a_rect);
|
|
|
|
ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL)0;
|
|
ELEMTYPEREAL radius;
|
|
|
|
for (int index=0; index < NUMDIMS; ++index) {
|
|
ELEMTYPEREAL halfExtent = ((ELEMTYPEREAL)a_rect->m_max[index]
|
|
- (ELEMTYPEREAL)a_rect->m_min[index]) * 0.5f;
|
|
sumOfSquares += halfExtent * halfExtent;
|
|
}
|
|
|
|
radius = (ELEMTYPEREAL)sqrt(sumOfSquares);
|
|
|
|
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
|
|
if (NUMDIMS == 3)
|
|
return (radius * radius * radius * m_unitSphereVolume);
|
|
else if (NUMDIMS == 2)
|
|
return (radius * radius * m_unitSphereVolume);
|
|
else
|
|
return (ELEMTYPEREAL)(pow(radius, NUMDIMS) * m_unitSphereVolume);
|
|
}
|
|
|
|
|
|
// Use one of the methods to calculate retangle volume
|
|
RTREE_TEMPLATE
|
|
ELEMTYPEREAL RTREE_QUAL::CalcRectVolume(Rect* a_rect)
|
|
{
|
|
#ifdef RTREE_USE_SPHERICAL_VOLUME
|
|
return RectSphericalVolume(a_rect); // Slower but helps certain merge cases
|
|
#else // RTREE_USE_SPHERICAL_VOLUME
|
|
return RectVolume(a_rect); // Faster but can cause poor merges
|
|
#endif // RTREE_USE_SPHERICAL_VOLUME
|
|
}
|
|
|
|
|
|
// Load branch buffer with branches from full node plus the extra branch.
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::GetBranches(Node* a_node, Branch* a_branch,
|
|
PartitionVars* a_parVars)
|
|
{
|
|
Q_ASSERT(a_node);
|
|
Q_ASSERT(a_branch);
|
|
|
|
Q_ASSERT(a_node->m_count == MAXNODES);
|
|
|
|
// Load the branch buffer
|
|
for (int index=0; index < MAXNODES; ++index)
|
|
a_parVars->m_branchBuf[index] = a_node->m_branch[index];
|
|
a_parVars->m_branchBuf[MAXNODES] = *a_branch;
|
|
a_parVars->m_branchCount = MAXNODES + 1;
|
|
|
|
// Calculate rect containing all in the set
|
|
a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
|
|
for (int index=1; index < MAXNODES+1; ++index)
|
|
a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit,
|
|
&a_parVars->m_branchBuf[index].m_rect);
|
|
a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit);
|
|
|
|
InitNode(a_node);
|
|
}
|
|
|
|
|
|
// Method #0 for choosing a partition:
|
|
// As the seeds for the two groups, pick the two rects that would waste the
|
|
// most area if covered by a single rectangle, i.e. evidently the worst pair
|
|
// to have in the same group.
|
|
// Of the remaining, one at a time is chosen to be put in one of the two groups.
|
|
// The one chosen is the one with the greatest difference in area expansion
|
|
// depending on which group - the rect most strongly attracted to one group
|
|
// and repelled from the other.
|
|
// If one group gets too full (more would force other group to violate min
|
|
// fill requirement) then other group gets the rest.
|
|
// These last are the ones that can go in either group most easily.
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill)
|
|
{
|
|
Q_ASSERT(a_parVars);
|
|
|
|
ELEMTYPEREAL biggestDiff;
|
|
int group, chosen = 0, betterGroup = 0;
|
|
|
|
InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill);
|
|
PickSeeds(a_parVars);
|
|
|
|
while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
|
|
&& (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill))
|
|
&& (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill))) {
|
|
biggestDiff = (ELEMTYPEREAL) -1;
|
|
|
|
for (int index=0; index<a_parVars->m_total; ++index) {
|
|
if (!a_parVars->m_taken[index]) {
|
|
Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
|
|
Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]);
|
|
Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]);
|
|
ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0];
|
|
ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1];
|
|
ELEMTYPEREAL diff = growth1 - growth0;
|
|
|
|
if (diff >= 0) {
|
|
group = 0;
|
|
} else {
|
|
group = 1;
|
|
diff = -diff;
|
|
}
|
|
|
|
if (diff > biggestDiff) {
|
|
biggestDiff = diff;
|
|
chosen = index;
|
|
betterGroup = group;
|
|
} else if ((diff == biggestDiff) && (a_parVars->m_count[group]
|
|
< a_parVars->m_count[betterGroup])) {
|
|
chosen = index;
|
|
betterGroup = group;
|
|
}
|
|
}
|
|
}
|
|
Classify(chosen, betterGroup, a_parVars);
|
|
}
|
|
|
|
// If one group too full, put remaining rects in the other
|
|
if ((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total) {
|
|
if (a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill)
|
|
group = 1;
|
|
else
|
|
group = 0;
|
|
|
|
for (int index=0; index<a_parVars->m_total; ++index) {
|
|
if (!a_parVars->m_taken[index])
|
|
Classify(index, group, a_parVars);
|
|
}
|
|
}
|
|
|
|
Q_ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total);
|
|
Q_ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) &&
|
|
(a_parVars->m_count[1] >= a_parVars->m_minFill));
|
|
}
|
|
|
|
|
|
// Copy branches from the buffer into two nodes according to the partition.
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars)
|
|
{
|
|
Q_ASSERT(a_nodeA);
|
|
Q_ASSERT(a_nodeB);
|
|
Q_ASSERT(a_parVars);
|
|
|
|
for (int index=0; index < a_parVars->m_total; ++index) {
|
|
Q_ASSERT(a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1);
|
|
|
|
if (a_parVars->m_partition[index] == 0)
|
|
AddBranch(&a_parVars->m_branchBuf[index], a_nodeA, NULL);
|
|
else if (a_parVars->m_partition[index] == 1)
|
|
AddBranch(&a_parVars->m_branchBuf[index], a_nodeB, NULL);
|
|
}
|
|
}
|
|
|
|
|
|
// Initialize a PartitionVars structure.
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::InitParVars(PartitionVars* a_parVars, int a_maxRects,
|
|
int a_minFill)
|
|
{
|
|
Q_ASSERT(a_parVars);
|
|
|
|
a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
|
|
a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL)0;
|
|
a_parVars->m_total = a_maxRects;
|
|
a_parVars->m_minFill = a_minFill;
|
|
|
|
for (int index=0; index < a_maxRects; ++index) {
|
|
a_parVars->m_taken[index] = false;
|
|
a_parVars->m_partition[index] = -1;
|
|
}
|
|
}
|
|
|
|
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::PickSeeds(PartitionVars* a_parVars)
|
|
{
|
|
int seed0 = 0, seed1 = 0;
|
|
ELEMTYPEREAL worst, waste;
|
|
ELEMTYPEREAL area[MAXNODES+1];
|
|
|
|
for (int index=0; index<a_parVars->m_total; ++index)
|
|
area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect);
|
|
|
|
worst = -a_parVars->m_coverSplitArea - 1;
|
|
for (int indexA=0; indexA < a_parVars->m_total-1; ++indexA) {
|
|
for (int indexB = indexA+1; indexB < a_parVars->m_total; ++indexB) {
|
|
Rect oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect,
|
|
&a_parVars->m_branchBuf[indexB].m_rect);
|
|
waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB];
|
|
if (waste > worst) {
|
|
worst = waste;
|
|
seed0 = indexA;
|
|
seed1 = indexB;
|
|
}
|
|
}
|
|
}
|
|
Classify(seed0, 0, a_parVars);
|
|
Classify(seed1, 1, a_parVars);
|
|
}
|
|
|
|
|
|
// Put a branch in one of the groups.
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::Classify(int a_index, int a_group, PartitionVars* a_parVars)
|
|
{
|
|
Q_ASSERT(a_parVars);
|
|
Q_ASSERT(!a_parVars->m_taken[a_index]);
|
|
|
|
a_parVars->m_partition[a_index] = a_group;
|
|
a_parVars->m_taken[a_index] = true;
|
|
|
|
if (a_parVars->m_count[a_group] == 0)
|
|
a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect;
|
|
else
|
|
a_parVars->m_cover[a_group] = CombineRect(
|
|
&a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group]);
|
|
|
|
a_parVars->m_area[a_group] = CalcRectVolume(&a_parVars->m_cover[a_group]);
|
|
++a_parVars->m_count[a_group];
|
|
}
|
|
|
|
|
|
// Delete a data rectangle from an index structure.
|
|
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
|
|
// Returns 1 if record not found, 0 if success.
|
|
// RemoveRect provides for eliminating the root.
|
|
RTREE_TEMPLATE
|
|
bool RTREE_QUAL::RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root)
|
|
{
|
|
Q_ASSERT(a_rect && a_root);
|
|
Q_ASSERT(*a_root);
|
|
|
|
Node* tempNode;
|
|
ListNode* reInsertList = NULL;
|
|
|
|
if (!RemoveRectRec(a_rect, a_id, *a_root, &reInsertList)) {
|
|
// Found and deleted a data item
|
|
// Reinsert any branches from eliminated nodes
|
|
while (reInsertList) {
|
|
tempNode = reInsertList->m_node;
|
|
|
|
for (int index = 0; index < tempNode->m_count; ++index)
|
|
InsertRect(&(tempNode->m_branch[index].m_rect),
|
|
tempNode->m_branch[index].m_data, a_root, tempNode->m_level);
|
|
|
|
ListNode* remLNode = reInsertList;
|
|
reInsertList = reInsertList->m_next;
|
|
|
|
FreeNode(remLNode->m_node);
|
|
FreeListNode(remLNode);
|
|
}
|
|
|
|
// Check for redundant root (not leaf, 1 child) and eliminate
|
|
if ((*a_root)->m_count == 1 && (*a_root)->IsInternalNode()) {
|
|
tempNode = (*a_root)->m_branch[0].m_child;
|
|
|
|
Q_ASSERT(tempNode);
|
|
FreeNode(*a_root);
|
|
*a_root = tempNode;
|
|
}
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
// Delete a rectangle from non-root part of an index structure.
|
|
// Called by RemoveRect. Descends tree recursively,
|
|
// merges branches on the way back up.
|
|
// Returns 1 if record not found, 0 if success.
|
|
RTREE_TEMPLATE
|
|
bool RTREE_QUAL::RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
|
|
ListNode** a_listNode)
|
|
{
|
|
Q_ASSERT(a_rect && a_node && a_listNode);
|
|
Q_ASSERT(a_node->m_level >= 0);
|
|
|
|
if (a_node->IsInternalNode()) { // not a leaf node
|
|
for (int index = 0; index < a_node->m_count; ++index) {
|
|
if (Overlap(a_rect, &(a_node->m_branch[index].m_rect))) {
|
|
if (!RemoveRectRec(a_rect, a_id, a_node->m_branch[index].m_child, a_listNode)) {
|
|
if (a_node->m_branch[index].m_child->m_count >= MINNODES) {
|
|
// child removed, just resize parent rect
|
|
a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
|
|
} else {
|
|
// child removed, not enough entries in node, eliminate
|
|
// node
|
|
ReInsert(a_node->m_branch[index].m_child, a_listNode);
|
|
DisconnectBranch(a_node, index);
|
|
// Must return after this call as count has changed
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
} else { // A leaf node
|
|
for (int index = 0; index < a_node->m_count; ++index)
|
|
{
|
|
if (a_node->m_branch[index].m_child == (Node*)a_id)
|
|
{
|
|
DisconnectBranch(a_node, index);
|
|
// Must return after this call as count has changed
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
// Decide whether two rectangles overlap.
|
|
RTREE_TEMPLATE
|
|
bool RTREE_QUAL::Overlap(Rect* a_rectA, Rect* a_rectB) const
|
|
{
|
|
Q_ASSERT(a_rectA && a_rectB);
|
|
|
|
for (int index=0; index < NUMDIMS; ++index) {
|
|
if (a_rectA->m_min[index] > a_rectB->m_max[index] ||
|
|
a_rectB->m_min[index] > a_rectA->m_max[index]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Add a node to the reinsertion list. All its branches will later
|
|
// be reinserted into the index structure.
|
|
RTREE_TEMPLATE
|
|
void RTREE_QUAL::ReInsert(Node* a_node, ListNode** a_listNode)
|
|
{
|
|
ListNode* newListNode;
|
|
|
|
newListNode = AllocListNode();
|
|
newListNode->m_node = a_node;
|
|
newListNode->m_next = *a_listNode;
|
|
*a_listNode = newListNode;
|
|
}
|
|
|
|
|
|
// Search in an index tree or subtree for all data retangles that overlap
|
|
// the argument rectangle.
|
|
RTREE_TEMPLATE
|
|
bool RTREE_QUAL::Search(Node* a_node, Rect* a_rect, int& a_foundCount,
|
|
bool (*a_resultCallback)(DATATYPE a_data, void* a_context),
|
|
void* a_context) const
|
|
{
|
|
Q_ASSERT(a_node);
|
|
Q_ASSERT(a_node->m_level >= 0);
|
|
Q_ASSERT(a_rect);
|
|
|
|
if (a_node->IsInternalNode()) { // This is an internal node in the tree
|
|
for (int index=0; index < a_node->m_count; ++index) {
|
|
if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) {
|
|
if (!Search(a_node->m_branch[index].m_child, a_rect,
|
|
a_foundCount, a_resultCallback, a_context)) {
|
|
return false; // Don't continue searching
|
|
}
|
|
}
|
|
}
|
|
} else { // This is a leaf node
|
|
for (int index=0; index < a_node->m_count; ++index) {
|
|
if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) {
|
|
DATATYPE& id = a_node->m_branch[index].m_data;
|
|
|
|
// NOTE: There are different ways to return results.
|
|
// Here's where to modify
|
|
if (a_resultCallback) {
|
|
++a_foundCount;
|
|
if (!a_resultCallback(id, a_context))
|
|
return false; // Don't continue searching
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true; // Continue searching
|
|
}
|
|
|
|
|
|
#undef RTREE_TEMPLATE
|
|
#undef RTREE_QUAL
|
|
|
|
#endif //RTREE_H
|