1
0
mirror of https://github.com/tumic0/GPXSee.git synced 2025-01-18 19:52:09 +01:00
GPXSee/src/rtree.h
2015-12-17 19:58:49 +01:00

1233 lines
34 KiB
C++

#ifndef RTREE_H
#define RTREE_H
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#define ASSERT assert // RTree uses ASSERT( condition )
#define Max(a,b) \
(((a) > (b)) ? (a) : (b))
#define Min(a,b) \
(((a) < (b)) ? (a) : (b))
#define RTREE_TEMPLATE template<class DATATYPE, class ELEMTYPE, int NUMDIMS, \
class ELEMTYPEREAL, int TMAXNODES, int TMINNODES>
#define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, \
TMINNODES>
// This version does not contain a fixed memory allocator, fill in lines with
// EXAMPLE to implement one.
#define RTREE_DONT_USE_MEMPOOLS
// Better split classification, may be slower on some systems
#define RTREE_USE_SPHERICAL_VOLUME
/// \class RTree
///
/// Implementation of RTree, a multidimensional bounding rectangle tree.
/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
///
/// This modified, templated C++ version by Greg Douglas at Auran
/// (http://www.auran.com)
///
/// \c DATATYPE Referenced data, should be int, void*, obj* etc. no larger than
/// sizeof<void*> and simple type
/// \c ELEMTYPE Type of element such as int or float
/// \c NUMDIMS Number of dimensions such as 2 or 3
/// \c ELEMTYPEREAL Type of element that allows fractional and large values such
/// as float or double, for use in volume calcs
///
/// NOTES: Inserting and removing data requires the knowledge of its constant
/// Minimal Bounding Rectangle. This version uses new/delete for nodes,
/// I recommend using a fixed size allocator for efficiency. Instead of using
/// a callback function for returned results, I recommend and efficient
/// pre-sized, grow-only memory array similar to MFC CArray or STL Vector for
/// returning search query result.
///
template<class DATATYPE, class ELEMTYPE, int NUMDIMS,
class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
class RTree
{
protected:
struct Node; // Fwd decl. Used by other internal structs and iterator
public:
enum
{
MAXNODES = TMAXNODES, ///< Max elements in node
MINNODES = TMINNODES, ///< Min elements in node
};
public:
RTree();
virtual ~RTree();
/// Insert entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers
/// not allowed.
void Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId);
/// Remove entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers
/// not allowed.
void Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId);
/// Find all within search rectangle
/// \param a_min Min of search bounding rect
/// \param a_max Max of search bounding rect
/// \param a_resultCallback Callback function to return result. Callback
/// should return 'true' to continue searching
/// \param a_context User context to pass as parameter to a_resultCallback
/// \return Returns the number of entries found
int Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
bool a_resultCallback(DATATYPE a_data, void* a_context),
void* a_context) const;
/// Remove all entries from tree
void RemoveAll();
/// Count the data elements in this container. This is slow as no internal
/// counter is maintained.
int Count();
/// Iterator is not remove safe.
class Iterator
{
private:
// Max stack size. Allows almost n^32 where n is number of branches in
// node
enum { MAX_STACK = 32 };
struct StackElement
{
Node* m_node;
int m_branchIndex;
};
public:
Iterator() { Init(); }
~Iterator() { }
/// Is iterator invalid
bool IsNull() { return (m_tos <= 0); }
/// Is iterator pointing to valid data
bool IsNotNull() { return (m_tos > 0); }
/// Access the current data element.
DATATYPE& operator*()
{
ASSERT(IsNotNull());
StackElement& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
/// Access the current data element.
const DATATYPE& operator*() const
{
ASSERT(IsNotNull());
StackElement& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
/// Find the next data element
bool operator++() { return FindNextData(); }
/// Get the bounds for this node
void GetBounds(ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS])
{
ASSERT(IsNotNull());
StackElement& curTos = m_stack[m_tos - 1];
Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex];
for (int index = 0; index < NUMDIMS; ++index) {
a_min[index] = curBranch.m_rect.m_min[index];
a_max[index] = curBranch.m_rect.m_max[index];
}
}
private:
// Reset iterator
void Init() { m_tos = 0; }
// Find the next data element in the tree (For internal use only)
bool FindNextData()
{
for (;;) {
if (m_tos <= 0)
return false;
// Copy stack top cause it may change as we use it
StackElement curTos = Pop();
if (curTos.m_node->IsLeaf()) {
// Keep walking through data while we can
if (curTos.m_branchIndex+1 < curTos.m_node->m_count) {
// There is more data, just point to the next one
Push(curTos.m_node, curTos.m_branchIndex + 1);
return true;
}
// No more data, so it will fall back to previous level
} else {
if (curTos.m_branchIndex+1 < curTos.m_node->m_count) {
// Push sibling on for future tree walk
// This is the 'fall back' node when we finish with
// the current level
Push(curTos.m_node, curTos.m_branchIndex + 1);
}
// Since cur node is not a leaf, push first of next level to
// get deeper into the tree
Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
Push(nextLevelnode, 0);
// If we pushed on a new leaf, exit as the data is ready at
// TOS
if (nextLevelnode->IsLeaf())
return true;
}
}
}
// Push node and branch onto iteration stack
void Push(Node* a_node, int a_branchIndex)
{
m_stack[m_tos].m_node = a_node;
m_stack[m_tos].m_branchIndex = a_branchIndex;
++m_tos;
ASSERT(m_tos <= MAX_STACK);
}
// Pop element off iteration stack
StackElement& Pop()
{
ASSERT(m_tos > 0);
--m_tos;
return m_stack[m_tos];
}
// Stack as we are doing iteration instead of recursion
StackElement m_stack[MAX_STACK];
// Top Of Stack index
int m_tos;
};
// Get 'first' for iteration
void GetFirst(Iterator& a_it)
{
a_it.Init();
Node* first = m_root;
while (first) {
if (first->IsInternalNode() && first->m_count > 1) {
a_it.Push(first, 1); // Descend sibling branch later
} else if(first->IsLeaf()) {
if(first->m_count) {
a_it.Push(first, 0);
}
break;
}
first = first->m_branch[0].m_child;
}
}
// Get Next for iteration
void GetNext(Iterator& a_it) { ++a_it; }
// Is iterator NULL, or at end?
bool IsNull(Iterator& a_it) { return a_it.IsNull(); }
// Get object at iterator position
DATATYPE& GetAt(Iterator& a_it) { return *a_it; }
protected:
// Minimal bounding rectangle (n-dimensional)
struct Rect
{
ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box
ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box
};
/// May be data or may be another subtree
/// The parents level determines this.
/// If the parents level is 0, then this is data
struct Branch
{
Rect m_rect; ///< Bounds
union
{
Node* m_child; ///< Child node
DATATYPE m_data; ///< Data Id or Ptr
};
};
/// Node for each branch level
struct Node
{
// Not a leaf, but a internal node
bool IsInternalNode() { return (m_level > 0); }
// A leaf, contains data
bool IsLeaf() { return (m_level == 0); }
int m_count; ///< Count
int m_level; ///< Leaf is zero, others positive
Branch m_branch[MAXNODES]; ///< Branch
};
/// A link list of nodes for reinsertion after a delete operation
struct ListNode
{
ListNode* m_next; ///< Next in list
Node* m_node; ///< Node
};
/// Variables for finding a split partition
struct PartitionVars
{
int m_partition[MAXNODES+1];
int m_total;
int m_minFill;
int m_taken[MAXNODES+1];
int m_count[2];
Rect m_cover[2];
ELEMTYPEREAL m_area[2];
Branch m_branchBuf[MAXNODES+1];
int m_branchCount;
Rect m_coverSplit;
ELEMTYPEREAL m_coverSplitArea;
};
Node* AllocNode();
void FreeNode(Node* a_node);
void InitNode(Node* a_node);
void InitRect(Rect* a_rect);
bool InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
Node** a_newNode, int a_level);
bool InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root,
int a_level);
Rect NodeCover(Node* a_node);
bool AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode);
void DisconnectBranch(Node* a_node, int a_index);
int PickBranch(Rect* a_rect, Node* a_node);
Rect CombineRect(Rect* a_rectA, Rect* a_rectB);
void SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode);
ELEMTYPEREAL RectSphericalVolume(Rect* a_rect);
ELEMTYPEREAL RectVolume(Rect* a_rect);
ELEMTYPEREAL CalcRectVolume(Rect* a_rect);
void GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars);
void ChoosePartition(PartitionVars* a_parVars, int a_minFill);
void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars);
void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill);
void PickSeeds(PartitionVars* a_parVars);
void Classify(int a_index, int a_group, PartitionVars* a_parVars);
bool RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root);
bool RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
ListNode** a_listNode);
ListNode* AllocListNode();
void FreeListNode(ListNode* a_listNode);
bool Overlap(Rect* a_rectA, Rect* a_rectB) const;
void ReInsert(Node* a_node, ListNode** a_listNode);
bool Search(Node* a_node, Rect* a_rect, int& a_foundCount,
bool a_resultCallback(DATATYPE a_data, void* a_context),
void* a_context) const;
void RemoveAllRec(Node* a_node);
void Reset();
void CountRec(Node* a_node, int& a_count);
/// Root of tree
Node* m_root;
/// Unit sphere constant for required number of dimensions
ELEMTYPEREAL m_unitSphereVolume;
};
RTREE_TEMPLATE
RTREE_QUAL::RTree()
{
ASSERT(MAXNODES > MINNODES);
ASSERT(MINNODES > 0);
// We only support machine word size simple data type eg. integer index or
// object pointer. Since we are storing as union with non data branch
ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));
// Precomputed volumes of the unit spheres for the first few dimensions
const float UNIT_SPHERE_VOLUMES[] = {
0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2
4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5
5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8
3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11
1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14
0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17
0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20
};
m_root = AllocNode();
m_root->m_level = 0;
m_unitSphereVolume = (ELEMTYPEREAL)UNIT_SPHERE_VOLUMES[NUMDIMS];
}
RTREE_TEMPLATE
RTREE_QUAL::~RTree()
{
Reset(); // Free, or reset node memory
}
RTREE_TEMPLATE
void RTREE_QUAL::Insert(const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
{
#ifdef _DEBUG
for (int index=0; index<NUMDIMS; ++index)
ASSERT(a_min[index] <= a_max[index]);
#endif //_DEBUG
Rect rect;
for (int axis=0; axis<NUMDIMS; ++axis) {
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
InsertRect(&rect, a_dataId, &m_root, 0);
}
RTREE_TEMPLATE
void RTREE_QUAL::Remove(const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
{
#ifdef _DEBUG
for (int index=0; index<NUMDIMS; ++index)
ASSERT(a_min[index] <= a_max[index]);
#endif //_DEBUG
Rect rect;
for (int axis=0; axis<NUMDIMS; ++axis) {
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
RemoveRect(&rect, a_dataId, &m_root);
}
RTREE_TEMPLATE
int RTREE_QUAL::Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context) const
{
#ifdef _DEBUG
for (int index=0; index<NUMDIMS; ++index)
ASSERT(a_min[index] <= a_max[index]);
#endif //_DEBUG
Rect rect;
for (int axis=0; axis<NUMDIMS; ++axis) {
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
// NOTE: May want to return search result another way, perhaps returning
// the number of found elements here.
int foundCount = 0;
Search(m_root, &rect, foundCount, a_resultCallback, a_context);
return foundCount;
}
RTREE_TEMPLATE
int RTREE_QUAL::Count()
{
int count = 0;
CountRec(m_root, count);
return count;
}
RTREE_TEMPLATE
void RTREE_QUAL::CountRec(Node* a_node, int& a_count)
{
if (a_node->IsInternalNode()) { // not a leaf node
for (int index = 0; index < a_node->m_count; ++index)
CountRec(a_node->m_branch[index].m_child, a_count);
} else { // A leaf node
a_count += a_node->m_count;
}
}
RTREE_TEMPLATE
void RTREE_QUAL::RemoveAll()
{
// Delete all existing nodes
Reset();
m_root = AllocNode();
m_root->m_level = 0;
}
RTREE_TEMPLATE
void RTREE_QUAL::Reset()
{
#ifdef RTREE_DONT_USE_MEMPOOLS
// Delete all existing nodes
RemoveAllRec(m_root);
#else // RTREE_DONT_USE_MEMPOOLS
// Just reset memory pools. We are not using complex types
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::RemoveAllRec(Node* a_node)
{
ASSERT(a_node);
ASSERT(a_node->m_level >= 0);
if (a_node->IsInternalNode()) { // This is an internal node in the tree
for (int index=0; index < a_node->m_count; ++index)
RemoveAllRec(a_node->m_branch[index].m_child);
}
FreeNode(a_node);
}
RTREE_TEMPLATE
typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode()
{
Node* newNode;
#ifdef RTREE_DONT_USE_MEMPOOLS
newNode = new Node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
InitNode(newNode);
return newNode;
}
RTREE_TEMPLATE
void RTREE_QUAL::FreeNode(Node* a_node)
{
ASSERT(a_node);
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
// Allocate space for a node in the list used in DeletRect to
// store Nodes that are too empty.
RTREE_TEMPLATE
typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode()
{
#ifdef RTREE_DONT_USE_MEMPOOLS
return new ListNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::FreeListNode(ListNode* a_listNode)
{
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_listNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::InitNode(Node* a_node)
{
a_node->m_count = 0;
a_node->m_level = -1;
}
RTREE_TEMPLATE
void RTREE_QUAL::InitRect(Rect* a_rect)
{
for (int index = 0; index < NUMDIMS; ++index) {
a_rect->m_min[index] = (ELEMTYPE)0;
a_rect->m_max[index] = (ELEMTYPE)0;
}
}
// Inserts a new data rectangle into the index structure.
// Recursively descends tree, propagates splits back up.
// Returns 0 if node was not split. Old node updated.
// If node was split, returns 1 and sets the pointer pointed to by
// new_node to point to the new node. Old node updated to become one of two.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
Node** a_newNode, int a_level)
{
ASSERT(a_rect && a_node && a_newNode);
ASSERT(a_level >= 0 && a_level <= a_node->m_level);
int index;
Branch branch;
Node* otherNode;
// Still above level for insertion, go down tree recursively
if (a_node->m_level > a_level) {
index = PickBranch(a_rect, a_node);
if (!InsertRectRec(a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level)) {
// Child was not split
a_node->m_branch[index].m_rect = CombineRect(a_rect, &(a_node->m_branch[index].m_rect));
return false;
} else { // Child was split
a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
branch.m_child = otherNode;
branch.m_rect = NodeCover(otherNode);
return AddBranch(&branch, a_node, a_newNode);
}
// Have reached level for insertion. Add rect, split if necessary
} else if (a_node->m_level == a_level) {
branch.m_rect = *a_rect;
branch.m_child = (Node*) a_id;
// Child field of leaves contains id of data record
return AddBranch(&branch, a_node, a_newNode);
} else {
// Should never occur
ASSERT(0);
return false;
}
}
// Insert a data rectangle into an index structure.
// InsertRect provides for splitting the root;
// returns 1 if root was split, 0 if it was not.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
// InsertRect2 does the recursion.
//
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root,
int a_level)
{
ASSERT(a_rect && a_root);
ASSERT(a_level >= 0 && a_level <= (*a_root)->m_level);
#ifdef _DEBUG
for (int index=0; index < NUMDIMS; ++index)
ASSERT(a_rect->m_min[index] <= a_rect->m_max[index]);
#endif //_DEBUG
Node* newRoot;
Node* newNode;
Branch branch;
// Root split
if (InsertRectRec(a_rect, a_id, *a_root, &newNode, a_level)) {
newRoot = AllocNode(); // Grow tree taller and new root
newRoot->m_level = (*a_root)->m_level + 1;
branch.m_rect = NodeCover(*a_root);
branch.m_child = *a_root;
AddBranch(&branch, newRoot, NULL);
branch.m_rect = NodeCover(newNode);
branch.m_child = newNode;
AddBranch(&branch, newRoot, NULL);
*a_root = newRoot;
return true;
}
return false;
}
// Find the smallest rectangle that includes all rectangles in branches of
// a node.
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover(Node* a_node)
{
ASSERT(a_node);
int firstTime = true;
Rect rect;
InitRect(&rect);
for (int index = 0; index < a_node->m_count; ++index) {
if (firstTime) {
rect = a_node->m_branch[index].m_rect;
firstTime = false;
} else {
rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect));
}
}
return rect;
}
// Add a branch to a node. Split the node if necessary.
// Returns 0 if node not split. Old node updated.
// Returns 1 if node split, sets *new_node to address of new node.
// Old node updated, becomes one of two.
RTREE_TEMPLATE
bool RTREE_QUAL::AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode)
{
ASSERT(a_branch);
ASSERT(a_node);
if (a_node->m_count < MAXNODES) { // Split won't be necessary
a_node->m_branch[a_node->m_count] = *a_branch;
++a_node->m_count;
return false;
} else {
ASSERT(a_newNode);
SplitNode(a_node, a_branch, a_newNode);
return true;
}
}
// Disconnect a dependent node.
// Caller must return (or stop using iteration index) after this as count has
// changed
RTREE_TEMPLATE
void RTREE_QUAL::DisconnectBranch(Node* a_node, int a_index)
{
ASSERT(a_node && (a_index >= 0) && (a_index < MAXNODES));
ASSERT(a_node->m_count > 0);
// Remove element by swapping with the last element to prevent gaps in array
a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
--a_node->m_count;
}
// Pick a branch. Pick the one that will need the smallest increase
// in area to accomodate the new rectangle. This will result in the
// least total area for the covering rectangles in the current node.
// In case of a tie, pick the one which was smaller before, to get
// the best resolution when searching.
RTREE_TEMPLATE
int RTREE_QUAL::PickBranch(Rect* a_rect, Node* a_node)
{
ASSERT(a_rect && a_node);
bool firstTime = true;
ELEMTYPEREAL increase;
ELEMTYPEREAL bestIncr = (ELEMTYPEREAL)-1;
ELEMTYPEREAL area;
ELEMTYPEREAL bestArea;
int best = 0;
Rect tempRect;
for (int index=0; index < a_node->m_count; ++index) {
Rect* curRect = &a_node->m_branch[index].m_rect;
area = CalcRectVolume(curRect);
tempRect = CombineRect(a_rect, curRect);
increase = CalcRectVolume(&tempRect) - area;
if ((increase < bestIncr) || firstTime) {
best = index;
bestArea = area;
bestIncr = increase;
firstTime = false;
} else if ((increase == bestIncr) && (area < bestArea)) {
best = index;
bestArea = area;
bestIncr = increase;
}
}
return best;
}
// Combine two rectangles into larger one containing both
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect(Rect* a_rectA, Rect* a_rectB)
{
ASSERT(a_rectA && a_rectB);
Rect newRect;
for (int index = 0; index < NUMDIMS; ++index) {
newRect.m_min[index] = Min(a_rectA->m_min[index], a_rectB->m_min[index]);
newRect.m_max[index] = Max(a_rectA->m_max[index], a_rectB->m_max[index]);
}
return newRect;
}
// Split a node.
// Divides the nodes branches and the extra one between two nodes.
// Old node is one of the new ones, and one really new one is created.
// Tries more than one method for choosing a partition, uses best result.
RTREE_TEMPLATE
void RTREE_QUAL::SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode)
{
ASSERT(a_node);
ASSERT(a_branch);
// Could just use local here, but member or external is faster since it is
// reused
PartitionVars localVars;
PartitionVars* parVars = &localVars;
int level;
// Load all the branches into a buffer, initialize old node
level = a_node->m_level;
GetBranches(a_node, a_branch, parVars);
// Find partition
ChoosePartition(parVars, MINNODES);
// Put branches from buffer into 2 nodes according to chosen partition
*a_newNode = AllocNode();
(*a_newNode)->m_level = a_node->m_level = level;
LoadNodes(a_node, *a_newNode, parVars);
ASSERT((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total);
}
// Calculate the n-dimensional volume of a rectangle
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectVolume(Rect* a_rect)
{
ASSERT(a_rect);
ELEMTYPEREAL volume = (ELEMTYPEREAL)1;
for (int index=0; index<NUMDIMS; ++index)
volume *= a_rect->m_max[index] - a_rect->m_min[index];
ASSERT(volume >= (ELEMTYPEREAL)0);
return volume;
}
// The exact volume of the bounding sphere for the given Rect
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume(Rect* a_rect)
{
ASSERT(a_rect);
ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL)0;
ELEMTYPEREAL radius;
for (int index=0; index < NUMDIMS; ++index) {
ELEMTYPEREAL halfExtent = ((ELEMTYPEREAL)a_rect->m_max[index]
- (ELEMTYPEREAL)a_rect->m_min[index]) * 0.5f;
sumOfSquares += halfExtent * halfExtent;
}
radius = (ELEMTYPEREAL)sqrt(sumOfSquares);
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
if (NUMDIMS == 3)
return (radius * radius * radius * m_unitSphereVolume);
else if (NUMDIMS == 2)
return (radius * radius * m_unitSphereVolume);
else
return (ELEMTYPEREAL)(pow(radius, NUMDIMS) * m_unitSphereVolume);
}
// Use one of the methods to calculate retangle volume
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::CalcRectVolume(Rect* a_rect)
{
#ifdef RTREE_USE_SPHERICAL_VOLUME
return RectSphericalVolume(a_rect); // Slower but helps certain merge cases
#else // RTREE_USE_SPHERICAL_VOLUME
return RectVolume(a_rect); // Faster but can cause poor merges
#endif // RTREE_USE_SPHERICAL_VOLUME
}
// Load branch buffer with branches from full node plus the extra branch.
RTREE_TEMPLATE
void RTREE_QUAL::GetBranches(Node* a_node, Branch* a_branch,
PartitionVars* a_parVars)
{
ASSERT(a_node);
ASSERT(a_branch);
ASSERT(a_node->m_count == MAXNODES);
// Load the branch buffer
for (int index=0; index < MAXNODES; ++index)
a_parVars->m_branchBuf[index] = a_node->m_branch[index];
a_parVars->m_branchBuf[MAXNODES] = *a_branch;
a_parVars->m_branchCount = MAXNODES + 1;
// Calculate rect containing all in the set
a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
for (int index=1; index < MAXNODES+1; ++index)
a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit,
&a_parVars->m_branchBuf[index].m_rect);
a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit);
InitNode(a_node);
}
// Method #0 for choosing a partition:
// As the seeds for the two groups, pick the two rects that would waste the
// most area if covered by a single rectangle, i.e. evidently the worst pair
// to have in the same group.
// Of the remaining, one at a time is chosen to be put in one of the two groups.
// The one chosen is the one with the greatest difference in area expansion
// depending on which group - the rect most strongly attracted to one group
// and repelled from the other.
// If one group gets too full (more would force other group to violate min
// fill requirement) then other group gets the rest.
// These last are the ones that can go in either group most easily.
RTREE_TEMPLATE
void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill)
{
ASSERT(a_parVars);
ELEMTYPEREAL biggestDiff;
int group, chosen = 0, betterGroup = 0;
InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill);
PickSeeds(a_parVars);
while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
&& (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill))
&& (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill))) {
biggestDiff = (ELEMTYPEREAL) -1;
for (int index=0; index<a_parVars->m_total; ++index) {
if (!a_parVars->m_taken[index]) {
Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]);
Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]);
ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0];
ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1];
ELEMTYPEREAL diff = growth1 - growth0;
if (diff >= 0) {
group = 0;
} else {
group = 1;
diff = -diff;
}
if (diff > biggestDiff) {
biggestDiff = diff;
chosen = index;
betterGroup = group;
} else if ((diff == biggestDiff) && (a_parVars->m_count[group]
< a_parVars->m_count[betterGroup])) {
chosen = index;
betterGroup = group;
}
}
}
Classify(chosen, betterGroup, a_parVars);
}
// If one group too full, put remaining rects in the other
if ((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total) {
if (a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill)
group = 1;
else
group = 0;
for (int index=0; index<a_parVars->m_total; ++index) {
if (!a_parVars->m_taken[index])
Classify(index, group, a_parVars);
}
}
ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total);
ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) &&
(a_parVars->m_count[1] >= a_parVars->m_minFill));
}
// Copy branches from the buffer into two nodes according to the partition.
RTREE_TEMPLATE
void RTREE_QUAL::LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars)
{
ASSERT(a_nodeA);
ASSERT(a_nodeB);
ASSERT(a_parVars);
for (int index=0; index < a_parVars->m_total; ++index) {
ASSERT(a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1);
if (a_parVars->m_partition[index] == 0)
AddBranch(&a_parVars->m_branchBuf[index], a_nodeA, NULL);
else if (a_parVars->m_partition[index] == 1)
AddBranch(&a_parVars->m_branchBuf[index], a_nodeB, NULL);
}
}
// Initialize a PartitionVars structure.
RTREE_TEMPLATE
void RTREE_QUAL::InitParVars(PartitionVars* a_parVars, int a_maxRects,
int a_minFill)
{
ASSERT(a_parVars);
a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL)0;
a_parVars->m_total = a_maxRects;
a_parVars->m_minFill = a_minFill;
for (int index=0; index < a_maxRects; ++index) {
a_parVars->m_taken[index] = false;
a_parVars->m_partition[index] = -1;
}
}
RTREE_TEMPLATE
void RTREE_QUAL::PickSeeds(PartitionVars* a_parVars)
{
int seed0 = 0, seed1 = 0;
ELEMTYPEREAL worst, waste;
ELEMTYPEREAL area[MAXNODES+1];
for (int index=0; index<a_parVars->m_total; ++index)
area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect);
worst = -a_parVars->m_coverSplitArea - 1;
for (int indexA=0; indexA < a_parVars->m_total-1; ++indexA) {
for (int indexB = indexA+1; indexB < a_parVars->m_total; ++indexB) {
Rect oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect,
&a_parVars->m_branchBuf[indexB].m_rect);
waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB];
if (waste > worst) {
worst = waste;
seed0 = indexA;
seed1 = indexB;
}
}
}
Classify(seed0, 0, a_parVars);
Classify(seed1, 1, a_parVars);
}
// Put a branch in one of the groups.
RTREE_TEMPLATE
void RTREE_QUAL::Classify(int a_index, int a_group, PartitionVars* a_parVars)
{
ASSERT(a_parVars);
ASSERT(!a_parVars->m_taken[a_index]);
a_parVars->m_partition[a_index] = a_group;
a_parVars->m_taken[a_index] = true;
if (a_parVars->m_count[a_group] == 0)
a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect;
else
a_parVars->m_cover[a_group] = CombineRect(
&a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group]);
a_parVars->m_area[a_group] = CalcRectVolume(&a_parVars->m_cover[a_group]);
++a_parVars->m_count[a_group];
}
// Delete a data rectangle from an index structure.
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
// Returns 1 if record not found, 0 if success.
// RemoveRect provides for eliminating the root.
RTREE_TEMPLATE
bool RTREE_QUAL::RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root)
{
ASSERT(a_rect && a_root);
ASSERT(*a_root);
Node* tempNode;
ListNode* reInsertList = NULL;
if (!RemoveRectRec(a_rect, a_id, *a_root, &reInsertList)) {
// Found and deleted a data item
// Reinsert any branches from eliminated nodes
while (reInsertList) {
tempNode = reInsertList->m_node;
for (int index = 0; index < tempNode->m_count; ++index)
InsertRect(&(tempNode->m_branch[index].m_rect),
tempNode->m_branch[index].m_data, a_root, tempNode->m_level);
ListNode* remLNode = reInsertList;
reInsertList = reInsertList->m_next;
FreeNode(remLNode->m_node);
FreeListNode(remLNode);
}
// Check for redundant root (not leaf, 1 child) and eliminate
if ((*a_root)->m_count == 1 && (*a_root)->IsInternalNode()) {
tempNode = (*a_root)->m_branch[0].m_child;
ASSERT(tempNode);
FreeNode(*a_root);
*a_root = tempNode;
}
return false;
} else {
return true;
}
}
// Delete a rectangle from non-root part of an index structure.
// Called by RemoveRect. Descends tree recursively,
// merges branches on the way back up.
// Returns 1 if record not found, 0 if success.
RTREE_TEMPLATE
bool RTREE_QUAL::RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
ListNode** a_listNode)
{
ASSERT(a_rect && a_node && a_listNode);
ASSERT(a_node->m_level >= 0);
if (a_node->IsInternalNode()) { // not a leaf node
for (int index = 0; index < a_node->m_count; ++index) {
if (Overlap(a_rect, &(a_node->m_branch[index].m_rect))) {
if (!RemoveRectRec(a_rect, a_id, a_node->m_branch[index].m_child, a_listNode)) {
if (a_node->m_branch[index].m_child->m_count >= MINNODES) {
// child removed, just resize parent rect
a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
} else {
// child removed, not enough entries in node, eliminate
// node
ReInsert(a_node->m_branch[index].m_child, a_listNode);
DisconnectBranch(a_node, index);
// Must return after this call as count has changed
}
return false;
}
}
}
return true;
} else { // A leaf node
for (int index = 0; index < a_node->m_count; ++index)
{
if (a_node->m_branch[index].m_child == (Node*)a_id)
{
DisconnectBranch(a_node, index);
// Must return after this call as count has changed
return false;
}
}
return true;
}
}
// Decide whether two rectangles overlap.
RTREE_TEMPLATE
bool RTREE_QUAL::Overlap(Rect* a_rectA, Rect* a_rectB) const
{
ASSERT(a_rectA && a_rectB);
for (int index=0; index < NUMDIMS; ++index) {
if (a_rectA->m_min[index] > a_rectB->m_max[index] ||
a_rectB->m_min[index] > a_rectA->m_max[index]) {
return false;
}
}
return true;
}
// Add a node to the reinsertion list. All its branches will later
// be reinserted into the index structure.
RTREE_TEMPLATE
void RTREE_QUAL::ReInsert(Node* a_node, ListNode** a_listNode)
{
ListNode* newListNode;
newListNode = AllocListNode();
newListNode->m_node = a_node;
newListNode->m_next = *a_listNode;
*a_listNode = newListNode;
}
// Search in an index tree or subtree for all data retangles that overlap
// the argument rectangle.
RTREE_TEMPLATE
bool RTREE_QUAL::Search(Node* a_node, Rect* a_rect, int& a_foundCount,
bool (*a_resultCallback)(DATATYPE a_data, void* a_context),
void* a_context) const
{
ASSERT(a_node);
ASSERT(a_node->m_level >= 0);
ASSERT(a_rect);
if (a_node->IsInternalNode()) { // This is an internal node in the tree
for (int index=0; index < a_node->m_count; ++index) {
if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) {
if (!Search(a_node->m_branch[index].m_child, a_rect,
a_foundCount, a_resultCallback, a_context)) {
return false; // Don't continue searching
}
}
}
} else { // This is a leaf node
for (int index=0; index < a_node->m_count; ++index) {
if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) {
DATATYPE& id = a_node->m_branch[index].m_data;
// NOTE: There are different ways to return results.
// Here's where to modify
if (a_resultCallback) {
++a_foundCount;
if (!a_resultCallback(id, a_context))
return false; // Don't continue searching
}
}
}
}
return true; // Continue searching
}
#undef RTREE_TEMPLATE
#undef RTREE_QUAL
#endif //RTREE_H